Journal of Atmospheric Chemistry

, Volume 64, Issue 2–3, pp 159–178 | Cite as

Sources, distribution and variability of hydrocarbons in total atmospheric suspended particulates of two Brazilian areas influenced by sugarcane burning

  • Otávio L. G. Maioli
  • Bastiaan A. Knoppers
  • Débora A. Azevedo


Polycyclic aromatic hydrocarbons (PAHs) and aliphatic hydrocarbons (AHs), such as n-alkanes, hopanes and steranes, were studied in relation to total atmospheric suspended particulates (TSP). Two representative Brazilian cities affected by sugarcane monoculture practices, with their rural surroundings, were chosen for the study. The cities chosen were Maceió (state of Alagoas, NE-Brazil) and Campos dos Goytacazes (state of Rio de Janeiro, SE-Brazil). Samples were collected during the harvesting period, when sugarcane burning occurs, and during the non-harvesting period. The aliphatic hydrocarbon fingerprints suggest a marked contribution of biogenic inputs and a slight contamination by aliphatics in areas far from the urban regions. In the urban areas, some petroleum contributions were observed, marked by the presence of hopanes (m/z 191) and steranes (m/z 217) in the mass chromatographic profiles. A marked increase in PAH concentrations was detected during the sugarcane burning periods, mainly at Campos dos Goytacazes. In a similar approach, n-alkane concentrations and BaP/nC24 ratios were higher during the sugarcane burning periods. These increases were mainly associated with PAH production by the pyrogenic process in relation to aliphatic hydrocarbons with the same carbon numbers. The PAH isomeric ratios and the mixture of petrogenic and pyrogenic compounds of the TSP suggest atmospheric contamination for all regions as a whole, but the more elevated pyrogenic contribution during the sugarcane burning period implies that the impact of this activity is relevant.


PAHs Aliphatic hydrocarbons Sugarcane burning Petroleum biomarkers Pollution sources 



The authors acknowledge financial support from the POLCAMAR project (Process no. 590002/2005-8) and fellowships from CNPq, the Brazilian Research Council. We would like to thank Dr. Emmanuel V. Silva Filho (UFF) and Wilson F. da Silva (UFAL) for sample collection, Robson Brandão (UFAL) and Lício Caetano (UFRJ) for map location and the Oswaldo Cruz Foundation for the use of the atmospheric sample collectors.


  1. Abas, M.R.B., Rahman, N.A., Omar, N.Y.M.J., Maah, M.J., Samah, A.A., Oros, D.R., Otto, A., Simoneit, B.R.T.: Organic composition of aerosol particulate matter during a haze episode in Kuala Lumpur, Malaysia. Atmos. Environ. 38, 4223–42141 (2004)CrossRefGoogle Scholar
  2. Allen, A.G., Rocha, G.O., Cardoso, A.A., Paterlini, W.C., Machado, C.M.D., de Andrade, J.B.: Atmospheric particulate polycyclic aromatic hydrocarbons from Road transport in southeast Brazil. Transp. Res. Part D 13, 483–490 (2008)CrossRefGoogle Scholar
  3. Alves, C., Oliveira, T., Pio, C., Silvestre, A.J.D., Fialho, P., Barata, F., Legrand, M.: Characterisation of carbonaceous aerosols from the Azorean Island of Terceira. Atmos. Environ. 41, 1359–1373 (2007)CrossRefGoogle Scholar
  4. Andrade, S.J., Cristale, J., Silva, F.S., Zocolo, G.J., Marchi, M.R.R.: Contribution of sugar-cane harvesting season to atmospheric contamination by polycyclic aromatic hydrocarbons (PAHs) in Araraquara city, Southeast Brazil. Atmos. Environ. 44, 2913–2919 (2010)CrossRefGoogle Scholar
  5. Azevedo, D.A., Moreira, L.S., Siqueira, D.S.: Composition of extractable organic matter in aerosols from urban areas of Rio de Janeiro city, Brazil. Atmos. Environ. 33, 4987–5001 (1999)CrossRefGoogle Scholar
  6. Azevedo, D.A., Santos, C.Y.M., Aquino Neto, F.R.: Identification and seasonal variation of atmospheric organic pollutants in Campos dos Goytacazes, Brazil. Atmos. Environ. 36, 2383–2395 (2002)CrossRefGoogle Scholar
  7. Azevedo, D.A., Gonçalves, M.L., Silva, D.B.: Organic geochemistry of the Angra dos Reis marine sediments: aliphatic and polycyclic aromatic hydrocarbons. Environ. Forensics 8, 245–256 (2007)CrossRefGoogle Scholar
  8. Azimi, S., Rocher, V., Muller, M., Moilleron, R., Thevenot, D.R.: Sources, distribution and variability of hydrocarbons and metals in atmospheric deposition in an urban area (Paris, France). Sci. Total Environ. 337, 223–239 (2005)CrossRefGoogle Scholar
  9. Baumard, P., Budzinski, H., Garrigues, P.: PAHs in Arcachon Bay, France: origin and biomonitoring with caged organisms. Mar. Pollut. Bull. 36, 577–586 (1998)CrossRefGoogle Scholar
  10. Bouloubassi, I., Fillaux, J., Saliot, A.: Hydrocarbons in Surface Sediments from the Changjiang (Yangtze River) Estuary, East China Sea. Mar. Pollut. Bull. 42, 1335–1346 (2001)CrossRefGoogle Scholar
  11. Broddin, G., Cautreels, W., Van Cauwenberghe, K.: On the aliphatic and polycyclic hydrocarbon levels in urban and background aerosols from Belgium and the Netherlands. Atmos. Environ. 14, 895–910 (1980)CrossRefGoogle Scholar
  12. Coleman, P.J., Lee, R.G.M., Alcock, R.E., Jones, K.C.: Observations on PAH, PCB, and PCDD/F trends in UK. Urban air, 1991–1995. Environ. Sci. Technol. 31, 2120–2124 (1997)CrossRefGoogle Scholar
  13. Commission Decision, (EU) No. 107 of December 2004. Relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. (
  14. Countway, R.E., Dickhut, R.M., Canuel, E.A.: Polycyclic aromatic hydrocarbon (PAH) distributions and associations with organic matter in surface waters of the York River, VA Estuary. Org. Geochem. 34, 209–224 (2003)CrossRefGoogle Scholar
  15. Da Silva, A. R.: Aporte atmosférico do nitrogênio inorgânico e orgânico em área urbana e agrícola no estado do Rio de Janeiro. Doctoral Thesys (2009). Fluminense Federal University, Brazil.Google Scholar
  16. Didyk, B.M., Simoneit, B.R.T., Pezoa, L.A., Riveros, M.L., Flores, A.A.: Urban aerosol particles of Santiago, Chile: organic content and molecular characterization. Atmos. Environ. 34, 1167–1179 (2000)CrossRefGoogle Scholar
  17. Doong, R., Linn, Y.T.: Characterization and distribution of polycyclic hydrocarbon contaminations in surface sediment and water from Gao-ping River, Taiwan. Water Research 38, 1733–1744 (2004)CrossRefGoogle Scholar
  18. Fine, P.M., Cass, G.R., Simoneit, B.R.T.: Chemical characterization of fine particle emissions from the fireplace combustion of woods grown in Northeastern United States. Environ. Sci. Technol. 35, 2665–2675 (2001)CrossRefGoogle Scholar
  19. Feng, J., Chan, C.K., Fang, M., Hu, M., He, L., Tang, X.: Characteristics of organic matter in PM2.5 in Shanghai. Chemosphere 64, 1393–1400 (2006)CrossRefGoogle Scholar
  20. Gardner, B., Hewitt, C.N., Jones, K.C.: PAHs in air adjacent to two inland water bodies. Environ. Sci. Technol. 29, 2405–2513 (1995)CrossRefGoogle Scholar
  21. Godoi, A.F.L., Ravindra, K., Godoi, R.H.M., Andrade, S.J., Santiago-Silva, M., Van Vaeck, L., Van Grieken, R.: Fast Chromatographic determination of polycyclic aromatic hydrocarbons in aerosol samples from sugar cane burning. J. Chromatogr. A 1027, 49–53 (2004)CrossRefGoogle Scholar
  22. Grimmer, G., Jacob, J., Naujack, K. W. :Profile of the polycyclic aromatic compounds from crude oils. 3. Inventory by GC. GC/MS-PAH in environmental materials. Fresen. Z. Anal. Chem. 316, 29-36 (1983)CrossRefGoogle Scholar
  23. Guo, W., He, M., Yang, Z., Lin, C., Quan, X., Wang, H.: Distribution of polycyclic aromatic in water, suspended particulate matter and sediment from Daliao River watershed, China. Chemosphere 68, 93–104 (2007)CrossRefGoogle Scholar
  24. Harrison, R.M., Smith, D.J.T., Luhana, L.: Source of atmospheric polycyclic aromatic hydrocarbons collected from urban location in Birmingham, UK. Environ. Sci. Technol. 30, 825–832 (1996)CrossRefGoogle Scholar
  25. Hays, M.D., Geron, C.D., Linna, K.J., Smith, N.D., Schauer, J.J.: Speciation of gas-phase and fine particle emissions from burning of foliar fuels. Environ. Sci. Technol. 36, 2281–2295 (2002)CrossRefGoogle Scholar
  26. Hays, M.D., Smith, N.D., Dong, Y.J.: Nature of unresolved complex mixture in size-distributed emissions from residential wood combustion as measured by thermal desorption-gas chromatography-mass spectrometry. J. Geophys. Res. 109(D16), D16S04/1–D16S04/13 (2004)CrossRefGoogle Scholar
  27. Henriques, R. V. D. H.: Aporte atmosférico de nitrogênio inorgânico e orgânico nas proximidades de Maceió (AL)—potencial impacto da atividade canavieira. Master Thesis. Fluminense Federal University, Brazil. (2009)Google Scholar
  28. Hien, T.T., Nam, P.P., Yasuhiro, S., Takayuki, K., Norimichi, T., Hiroshi, B.: Comparison of particles-phase polycyclic aromatic hydrocarbons and their variability causes in the ambient air in Ho Chi Minh City, Vietnam and in Osaka, Japan, during 2005–2006. Sci. Total Environ. 382, 70–81 (2007)CrossRefGoogle Scholar
  29. Kalaitzoglou, M., Terzi, E., Sâmara, C.: Patterns and sources of particle-phase aliphatic and polycyclic aromatic hydrocarbons in urban and rural sites of western Greece. Atmos. Environ. 38, 2545–2560 (2004)CrossRefGoogle Scholar
  30. Kamens, R.M., Guo, Z., Fulcher, J.N., Bell, D.A.: The influence of humidity, sunlight, and temperature on the daytime decay of polycyclic hydrocarbons on atmospheric soot particles. Environ. Sci. Technol. 22, 103–108 (1988)CrossRefGoogle Scholar
  31. Kavouras, I.G., Koutrakis, P., Tsapakis, M., Lagoudaki, E., Stephanou, E.G., Baer, D.V., Oyola, P.: Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAH) using multivariate methods. Environ. Sci. Technol. 35, 2288–2294 (2001)CrossRefGoogle Scholar
  32. Khalili, N.R., Scheff, P. A., Holsen, T. M.: PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmos. Environ. 29, 553–542 (1995)CrossRefGoogle Scholar
  33. Manoli, E., Samara, C., Konstantinou, I., Albanis, T.: Polycyclic aromatic hydrocarbons in the bulk precipitation and surface waters of Northern Greece. Chemosphere 41, 1845–1855 (2000)CrossRefGoogle Scholar
  34. Medeiros, P., Bícego, M.C., Castelao, R., Del Rosso, C., Fillmann, G., Zamboni, A.: Natural and anthropogenic hydrocarbon input to sediments of Patos Lagoon Estuary, Brazil. Environ. Int. 31, 77–87 (2005)CrossRefGoogle Scholar
  35. Meij, R., te Winkel, H.: The emissions of heavy metals and persistent organic pollutants from modern coal-fired power stations. Atmos. Environ. 41, 9262–9272 (2007)CrossRefGoogle Scholar
  36. Neilson, A. H.: PAHs and related compounds. Springer, Berlin (1998)Google Scholar
  37. Oliveira, A.M., Kjerfve, B.: Environmental responses of a tropical coastal lagoon system to hydrological variability: Mundaú-Manguaba, Brazil. Estuar. Coast. Shelf S. 37, 575–591 (1993)CrossRefGoogle Scholar
  38. Peters, K.E., Walter, C.C., Moldowan, J.M.: The biomarker guide. Biomarkers and isotopes in the environment and human history. Vol. 1, p. 471. Cambridge University Press, Cambridge (2005)Google Scholar
  39. Ravindra, K., Sokhi, R., Van Grieken, R.: Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos. Environ. 42, 2895–2921 (2008)CrossRefGoogle Scholar
  40. Readman, J.W., Fillmann, G., Tolosa, I., Bartocci, J., Villeneuve, J.P., Cattini, C., Mee, L.D.: Petroleum and PAH contamination of the Black Sea. Mar. Pollut. Bull. 44, 48–62 (2002)CrossRefGoogle Scholar
  41. Re-Poppi, N., Santiago-Silva, M.: Polycyclic aromatic hydrocarbons and other selected organic compounds in ambient air of Campo Grande City, Brazil. Atmos. Environ. 39, 2839–2850 (2005)CrossRefGoogle Scholar
  42. Rocha, G.O., Lopes, W.A., Pereira, P.A.P., Vasconcelos, P.C., Oliveira, F.S., Carvalho, L.S., Conceição, L.S., de Andrade, J.B.: Quantification and source identification of atmospheric particulate polycyclic aromatic hydrocarbons and their dry deposition fluxes at three sites in Salvador Basin, Brazil, impacted by mobile and stationary sources. J. Brazil. Chem. Soc. 20, 680–692 (2009)Google Scholar
  43. Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R.: Sources of the fine organic aerosol. 2. Noncatalist and catalyst-equipped automobiles and heavy-duty diesel trucks. Environ. Sci. Technol. 27, 636–651 (1993)CrossRefGoogle Scholar
  44. Santos, C.Y.M., Azevedo, D.A., Aquino Neto, F.R.: Selected organic compounds from biomass burning found in the atmospheric particulate matter over sugarcane plantation areas. Atmos. Environ. 36, 3009–3019 (2002)CrossRefGoogle Scholar
  45. Schmidl, C., Bauer, H., Dattler, A., Hitzenberger, R., Weissenboeck, G., Marr, I.L., Puxbaum, H.: Chemical characterization of particle emissions from burning leaves. Atmos. Environ. 42, 9070–9079 (2008)CrossRefGoogle Scholar
  46. Schnelle-Kreis, J., Gebefugi, I., Welzl, G., Jaensch, T., Kettrup, A.: Occurrence of particle-associated polycyclic aromatic compounds in ambient air of city of Munich. Atmos. Environ. 35, S71–S81 (2001)CrossRefGoogle Scholar
  47. Schnelle-Kreis, J., Sklorz, M., Peters, A., Cyris, J., Zimmermmann, R.: Analysis of particle-associated semi-volatile aromatic and aliphatic hydrocarbon in urban particulate matter on a daily basis. Atmos. Environ. 39, 7702–7714 (2005)Google Scholar
  48. Sicre, M. A., Marty, J. C., Saliot, S., Aparicio, X., Grimalt, J., Albaiges, J.: Aliphatic and aromatic hydrocarbons in different sized aerosols over the mediterranean sea: occurence and origin. Atmos. Environ. 21, 2247–2259 (1987)CrossRefGoogle Scholar
  49. Silva, T.F., Azevedo, D.A., Aquino Neto, F.R.: Distribution of polycyclic aromatic hydrocarbons in surface sediments and water from Guanabara Bay, RJ, Brazil. J. Brazil. Chem. Soc. 18, 628–637 (2007a)Google Scholar
  50. Silva, T.F., Azevedo, D.A., Aquino Neto, F.R.: Polycyclic aromatic hydrocarbons in fishes and sediments from Guanabara Bay, Brazil. Environ. Forensics 8, 257–264 (2007b)CrossRefGoogle Scholar
  51. Simick, M.F., Zhang, H., Eisenreich, S.J., Franz, T.P.: Urban contamination of the Chicago/coastal Lake Michigan atmosphere by PCBs and PAHs during AEOLOS. Environ. Sci. Technol. 31, 2141–2147 (1997)CrossRefGoogle Scholar
  52. Simoneit, B.R.T.: Application of molecular marks analysis to reconcile sources of carbonaceous particulates in tropospheric aerosols. Sci. Total Environ. 36, 61–72 (1984)CrossRefGoogle Scholar
  53. Simoneit, B.R.T., Elias, V.O.: Organic tracers from biomass burning in atmospheric particulate matter over the ocean. Mar. Chem. 69, 301–312 (2000)CrossRefGoogle Scholar
  54. Standley, L.D., Simoneit, B.R.T.: Characterization of extractable plant wax, resin, and thermally matured components in smoke particles from prescribed burns. Environ. Sci. Technol. 21, 163–169 (1987)CrossRefGoogle Scholar
  55. Tao, S., Wu, S.P., Zhang, Z.H., Lan, T., Zuo, Q.: Distribution of particle-phase hydrocarbons, PAHs and OCPs in Tianjin, China. Atmos. Environ. 39, 7420–7432 (2005)CrossRefGoogle Scholar
  56. Vasconcellos, P.C., Artaxo, P.E., Ciccioli, P., Cecinato, A., Brancaleoni, E., Frattoni, M.: Determinação dos hidrocarbonetos saturados e policíclicos aromáticos presentes no material particulado da atmosfera amazônica. Quim. Nova 21, 385–393 (1998)Google Scholar
  57. Vasconcellos, P.C., Zacarias, D., Pires, M.A.F., Pool, C.S., Carvalho, L.R.F.: Measurements of polycyclic aromatic hydrocarbons in airborne particles from the metropolitan area of São Paulo City, Brazil. Atmos. Environ. 37, 3009–3018 (2003)CrossRefGoogle Scholar
  58. Vasilakos, Ch, Levi, N., Maggos, Th, Hatzianestis, J., Michopoulos, Helmis, C.: Gas-Particle concentration and characterization of sources of PAHs in the atmosphere of a suburban area in Athens, Greece. J. Hazard. Mater. 140, 45–51 (2007)CrossRefGoogle Scholar
  59. Volkman, J.K., Revill, A.T., Murray, A.P.: Applications of biomarkers for identifying sources of natural and pollutant hydrocarbons in aquatic environment. In: Eganhouse, R.P. (ed.) Molecular markers in environmental geochemistry. ACS Symposium Series. American Chemical Society, Washington (1997)Google Scholar
  60. Wu, S.P., Tao, S., Zhang, Z.H., Lan, T., Zuo, Q.: Distribution of particle-phase hydrocarbons PAHs and OCPs in Tianjin, China. Atmos. Environ. 39, 7420–7432 (2005)CrossRefGoogle Scholar
  61. Wu, S.P., Tao, S., Zhang, Z.H., Lan, T., Zuo, Q.: Characterization of TSP-bound n-alkanes and polycyclic aromatic hydrocarbons at rural and urban sites of Tianjin, China. Environ. Pollut. 147, 203–210 (2007)CrossRefGoogle Scholar
  62. Yunker, M.B., McDonald, R.W., Vingarzan, R., Mitchell, R.H., Goyette, D., Sylvestre, S.: PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 33, 489–515 (2002)CrossRefGoogle Scholar
  63. Zamperlini, G.C.M., Santiago-Silva, M.R., Vilegas, W.: Identification of polycyclic aromatic hydrocarbons in sugarcane soot by gas chromatography-mass spectrometry. Chromatographia 46, 655–663 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Otávio L. G. Maioli
    • 1
  • Bastiaan A. Knoppers
    • 2
  • Débora A. Azevedo
    • 1
  1. 1.Universidade Federal do Rio de JaneiroInstituto de QuímicaRio de JaneiroBrazil
  2. 2.Departamento de GeoquímicaUniversidade Federal FluminenseNiteróiBrazil

Personalised recommendations