Journal of Atmospheric Chemistry

, Volume 62, Issue 2, pp 151–174 | Cite as

Seasonality of tropospheric ozone and water vapor over Delhi, India: a study based on MOZAIC measurement data

  • Lokesh K. Sahu
  • Shyam Lal
  • Valérie Thouret
  • Herman G. Smit


Tropospheric distributions of ozone (O3) and water vapor (H2O) have been presented based on the Measurements of OZone and water vapor by Airbus In-Service AirCraft (MOZAIC) data over the metro and capital city of Delhi, India during 1996–2001. The vertical mixing ratios of both O3 and H2O show strong seasonal variations. The mixing ratios of O3 were often below 40 ppbv near the surface and higher values were observed in the free troposphere during the seasons of winter and spring. In the free troposphere, the high mixing ratio of O3 during the seasons of winter and spring are mainly due to the long-range transport of O3 and its precursors associated with the westerly-northwesterly circulation. In the lower and middle troposphere, the low mixing ratios of ∼20–30 ppbv observed during the months of July–September are mainly due to prevailing summer monsoon circulation over Indian subcontinent. The summer monsoon circulation, southwest (SW) wind flow, transports the O3-poor marine air from the Arabian Sea and Indian Ocean. The monthly averages of rainfall and mixing ratio of H2O show opposite seasonal cycles to that of O3 mixing ratio in the lower and middle troposphere. The change in the transport pattern also causes substantial seasonal variation in the mixing ratio of H2O of 3–27 g/kg in the lower troposphere over Delhi. Except for some small-scale anomalies, the similar annual patterns in the mixing ratios of O3 and H2O are repeated during the different years of 1996–2001. The case studies based on the profiles of O3, relative humidity (RH) and temperature show distinct features of vertical distribution over Delhi. The impacts of long range transport of air mass from Africa, the Middle East, Indian Ocean and intrusions of stratospheric O3 have also been demonstrated using the back trajectory model and remote sensing data for biomass burning and forest fire activities.


Rain Delhi Transport Marine Troposphere Tropical Ozone Fire 



The authors acknowledge for their strong support the European Commission, Airbus, CNRS-France, FZJ-Germany and the airlines (Lufthansa, Air France, Austrian and former Sabena who carry free of charge the MOZAIC instrumentation since 1994). We are thankful to the Indian Meteorological Department (IMD), Government of India for providing us the rainfall data. We are thankful to Dr. M. Kajino and Japan Meteorological Agency (JMA) for providing potential vorticity data. The ATSR World Fire Atlas data has been taken from Ionia products of European Space Agency.


  1. Appenzeller, C., Davies, H.C.: Structure of stratospheric intrusion into the troposphere. Nature 358, 570–572 (1992)CrossRefGoogle Scholar
  2. Appenzeller, C., Holton, J.R.: Tracer lamination in the stratosphere: A global climatology. J. Geophys. Res. 102, 13555–13569 (1997)CrossRefGoogle Scholar
  3. Asnani, G.C.: Climatology of the tropics. In: Tropical Meteorology, Indian Institute of Tropical Meteorology, Pune, India, Vol. I, pp. 100–204 (1993)Google Scholar
  4. Carmichael, G.R., Uno, I., Phadnis, M.J., Zhang, Y., Sunwoo, Y.: Tropospheric ozone production and transport in the springtime in east Asia. J. Geophys. Res. 103, 10649–10671 (1998)CrossRefGoogle Scholar
  5. Chatfield, R.B., Crutzen, P.J.: Sulfur dioxide in remote oceanic air: Cloud transport of reactive precursors. J. Geophys. Res. 89, 7111–7132 (1984)CrossRefGoogle Scholar
  6. Cooper, O.R., Moody, J.L., Davenport, J.C., Oltmans, S.J., Johnson, B.J., Chen, X., Shepson, P.B., Merrill, J.T.: The influence of springtime weather systems on vertical ozone distributions over three North American sites. J. Geophys. Res. 103, 22001–22013 (1998)CrossRefGoogle Scholar
  7. Crutzen, P.J., Andreae, M.O.: Atmospheric chemistry. In: Malone, T.F., Roederer, J.G. (eds.) Global Change, pp. 75–113. Cambridge University Press, Cambridge (1985)Google Scholar
  8. Crutzen, P.J., Heidt, L.E., Krasnec, J.P., Pollock, W.H., Seiler, W.: Biomass burning as a source of atmospheric gases CO, H2, N2O, CH3Cl and COS. Nature 282, 253–256 (1979)CrossRefGoogle Scholar
  9. Davies, W.E., Vaughan, G., O’Connor, F.M.: Observation of near-zero ozone concentrations in the upper troposphere at mid-latitudes. Geophys. Res. Lett. 25, 1173–1176 (1998)CrossRefGoogle Scholar
  10. Diab, R.D., Thompson, A.M., Zunckel, M., Coetzee, G.J.R., Combrink, J., Bodeker, G.E., Fishman, J., Sokolic, F., McNa-mara, D.P., Archer, C.B., Nganga, D.: Vertical ozone distribution over southern Africa and adjacent oceans during SA-FARI92. J. Geophys. Res. 101(D19), 23823–23833 (1996)CrossRefGoogle Scholar
  11. Ding, A.J., Tao, W., Thouret, V., Cammas, J.-P., Nedelec, P.: Tropospheric ozone climatology over Beijing: Analysis of aircraft data from the MOZAIC program. Atmos. Chem. Phys. 8, 1–13 (2008)Google Scholar
  12. Draxler, R.R., Hess, G.D.: An overview of the HYSPLIT-4 modeling system for trajectories, dispersion, and deposition. Aust. Meteorol. Mag. 47, 295–308 (1998)Google Scholar
  13. Fishman, J., Fakhruzzaman, K., Cros, B., Nganga, D.: Identification of widespread pollution in the Southern Hemisphere deduced from satellite analyses. Science 252, 1693–1696 (1991)CrossRefGoogle Scholar
  14. Folkins, I.A., Loewenstein, M., Podolske, J., Oltmans, S., Proffitt, M.: A barrier to vertical mixing at 14 km in the tropics: Evidence from ozonesondes and aircraft measurements. J. Geophys. Res. 104, 22095–22101 (1999)CrossRefGoogle Scholar
  15. Folkins, I., Braun, C., Thompson, A.M., Witte, J.C.: Tropical ozone as an indicator of deep convective outflow. J. Geophys. Res. 107(D13), 4184 (2002). doi: 10.129/2001JD001178 CrossRefGoogle Scholar
  16. Forster, P.M., Shine, K.P.: Radiative forcing and temperature trends from stratospheric ozone changes. J. Geophys. Res. 102, 10841–10856 (1997)CrossRefGoogle Scholar
  17. Fortuin, J.P.F., Kelder, H.: An ozone climatology based on ozonesonde and satellite measurement. J. Geophys. Res. 105(D24), 31709–31734 (1998)Google Scholar
  18. Fujiwara, M., Kita, K., Ogawa, T.: Stratosphere-troposphere exchange of ozone associated with the equatorial Kelvin wave as observed with ozonesondes and rawinsondes. J. Geophys. Res. 103, 19173–19182 (1998)CrossRefGoogle Scholar
  19. Fujiwara, M., Kita, K., Ogawa, T., Kawakami, S., Sana, T., Komala, N., Saraspriya, S., Suripto, A.: Tropospheric ozone enhancements during the Indonesian forest fire events in 1994 and in 1997 as revealed by ground-based observations. Geophys. Res. Lett. 26(16), 2417–2420 (1999)CrossRefGoogle Scholar
  20. Fujiwara, M., Kita, K., Ogawa, T., Kawakami, S., Sano, T., Komala, N., Saraspriya, S., Suripto, A.: Seasonal variation of tropospheric ozone in Indonesia revealed by 5-year ground-based observations. J. Geophys. Res. 105(D2), 1879–1888 (2000)CrossRefGoogle Scholar
  21. Gauss, M., et al.: Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere. J. Geophys. Res. 108(D9), 4292 (2003). doi: 10.1029/2002JD002624 CrossRefGoogle Scholar
  22. Gettelman, A., Kinnison, D.E., Dunkerton, T.J., Brasseur, G.P.: Impact of monsoon circulations on the upper troposphere and lower stratosphere. J. Geophys. Res. 109, D22101 (2004). doi: 10.1029/2004JD004878 CrossRefGoogle Scholar
  23. Ghude, S.D., Jain, S.L., Arya, B.C., Beig, G., Ahammed, Y.N., Kumar, A., Tyagi, B.: Ozone in ambient air at a tropical megacity, Delhi: characteristics, trends and cumulative ozone exposure indices. J. Atmos. Chem. 60(3), 237 (2008). doi: 10.1007/s10874-009-9119-4 CrossRefGoogle Scholar
  24. Gupta, S., Lal, S., Venkataramani, S., Rajesh, T.A., Acharya, Y.B.: Variability in the vertical distribution of ozone over a subtropical site in India during a winter month. J. Atmos. Sol.-Terr. Phys. 69, 1502–1512 (2007)CrossRefGoogle Scholar
  25. Hastenrath, S.: Climate and Circulation in the Tropics. Reidel, Dordrecht (1985)Google Scholar
  26. Helten, M., Smit, H.G.J., Sträter, W., Kley, D., Nedelec, P., Zöger, M., Busen, R.: Calibration and performance of automatic compact instrumentation for the measurement of relative humidity from passenger aircraft. J. Geophys. Res. 103, 25643–25652 (1998)CrossRefGoogle Scholar
  27. Helten, M., Smit, H.G.J., Kley, D., Ovarlez, J., Schlager, H., Baumann, R., Schumann, U., Nedelec, P., Marenco, A.: In-flight intercomparison of MOZAIC and POLINAT water vapor Measurements. J. Geophys. Res. 104, 26087–26096 (1999)CrossRefGoogle Scholar
  28. Houghton, J.T., Meira Filho, L.G., Callander, B.A., Harris, N., Kattenberg, A., Maskell, K.: Climate Change, 1995: The Science of Climate Change, p. 572. Cambridge University Press, Cambridge (1996)Google Scholar
  29. IPCC: Climate Change 1995: The Science of Climate Change. Contribution of Working Group 1 to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (1996)Google Scholar
  30. Jiang, J.H., Livesey, N.J., Su, H., Neary, L., McConnell, J.C., Richards, N.A.D.: Connecting surface emissions, convective uplifting, and long-range transport of carbon monoxide in the upper troposphere: New observations from the Aura Microwave Limb Sounder. Geophys. Res. Lett. 34, L18812 (2007). doi: 10.1029/2007GL030638 CrossRefGoogle Scholar
  31. Kar, J., et al.: Evidence of vertical transport of carbon monoxide from measurements of pollution in the troposphere (MOPITT). Geophys. Res. Lett. 31, L23105 (2004). doi: 10.1029/2004GL021128 CrossRefGoogle Scholar
  32. Kim, Y.K., Lee, H.W., Park, J.K., Moon, Y.S.: The stratosphere-troposphere exchange of ozone and aerosols over Korea. Atmos. Environ. 36, 449–463 (2002)CrossRefGoogle Scholar
  33. Kirchhoff, V.W.J.H.: Increasing concentrations of CO and O3-rising deforestation rates and increasing tropospheric carbon monoxide and ozone in Amazonia. Environ. Sci. Poll. Res. 3(210–212), 1996 (1996)Google Scholar
  34. Kirchhoff, V.W.J.H., Barnes, R.A., Torres, A.L.: Ozone climatology at Natal, Brazil, from in situ ozonesonde data. J. Geophys. Res. 96(D6), 10899–10909 (1991)CrossRefGoogle Scholar
  35. Kley, D., Crutzen, P.J., Smit, H.G.J., Vomel, H., Oltmans, S.J., Grassl, H., Ramanathan, V.: Observations of near-zero ozone concentrations over the convective Pacific: Effects on air chemistry. Science 274, 230–233 (1996)CrossRefGoogle Scholar
  36. Kunhikrishnan, T., Lawrence, M.G., von Kuhlmann, R., Wenig, M.O., Asman, W.A.H., Richter, A., Burrows, J.P.: Regional NOx emission strength for the Indian subcontinent and the impact of emissions from India and neighboring countries on regional O3 chemistry. J. Geophys. Res. 111, D15301 (2006). doi: 10.1029/2005JD006036 CrossRefGoogle Scholar
  37. Lal, S., Sahu, L.K., Venkataramani, S.: Impact of transport from the surrounding continental regions on the distributions of ozone and related trace gases over the Bay of Bengal during February 2003. J. Geophys. Res. 112, D14302 (2007). doi: 10.1029/2006JD008023 CrossRefGoogle Scholar
  38. Lelieveld, J., Crutzen, P.J.: Influences of cloud photochemical processes on tropospheric ozone. Nature 343, 227–233 (1990)CrossRefGoogle Scholar
  39. Liu, S.C., Trainer, M., Fehsenfeld, F.C., Parrish, D.D., Williams, E.J., Fahey, D.W., Hubler, G., Murphy, P.C.: Ozone production in the rural troposphere and implications for regional and global ozone distributions. J. Geophys. Res. 92, 10463–10482 (1987)Google Scholar
  40. Logan, J.A.: An analysis of ozonesonde data for the troposphere: Recommendations for testing 3-D models, and development of a gridded climatology for tropospheric ozone. J. Geophys. Res. 104, 16115–16149 (1999)CrossRefGoogle Scholar
  41. Logan, J.A., Prather, J.J., Wofsy, S.C., McElroy, M.B.: Tropospheric chemistry: A global perspective. J. Geophys. Res. 86, 7210–7254 (1981)CrossRefGoogle Scholar
  42. Longo, K.M., Thompson, A.M., Kirchoff, V.W.J.H., Remer, L.A., de Freitas, S.R., Silva Dias, M.A.F., Artaxo, P., Hart, W., Spinhirne, J.D., Yamasoe, M.A.: Correlation between smoke and tropospheric ozone concentration in Cuiaba during Smoke, Clouds, and Radiation-Brazil (SCAR-B). J. Geophys. Res. 104(D10), 12113–12129 (1999)CrossRefGoogle Scholar
  43. Marenco, A., Thouret, V., Nedelec, P., Smit, H., Helten, M., Kley, D., Karcher, F., Simon, P., Law, K., Pyle, J., Poschmann, G., Von Wrede, R., Hume, C., Cook, T.: Measurement of ozone and water vapor by Airbus in-service aircraft: The MOZAIC air-borne program, an overview. J. Geophys. Res. 103(D19), 25631–25642 (1998)CrossRefGoogle Scholar
  44. Merrill, J.T., Moody, J.L., Oltmans, S.J., Levy II, H.: Meteorological analysis of tropospheric ozone profiles at Bermuda. J. Geophys. Res. 101(D22), 29201–29211 (1996)CrossRefGoogle Scholar
  45. Oltmans, S.J., Lefohn, A.S., Scheel, H.E., Harris, J.M., Levy, H., Galbally, I.E., Brunke, E.G., Meyer, C.P., Lathrop, J.A., Johnson, B.J., Shadwick, D.S., Cuevas, E., Schmidlin, F.J., Tarasick, D.W., Claude, H., Kerr, J.B., Uchino, O., Mohnen, V.: Trends of ozone in the troposphere. Geophys. Res. Lett. 25, 139–142 (1998)CrossRefGoogle Scholar
  46. Park, M., Randel, W.J., Gettelman, A., Massie, S.T., Jiang, J.H.: Transport above the Asian summer monsoon anticyclone inferred from Aura Microwave Limb Sounder tracers. J. Geophys. Res. 112, D16309 (2007). doi: 10.1029/2006JD008294 CrossRefGoogle Scholar
  47. Park, M., Randel, W.J., Emmons, L.K., Bernath, P.F., Walker, K.A., Boone, C.D.: Chemical isolation in the Asian monsoon anticyclone observed in Atmospheric Chemistry Experiment (ACE-FTS) data. Atmos. Chem. Phys. 8, 757–764 (2008)CrossRefGoogle Scholar
  48. Ramanathan, V., Cicerone, R.J., Singh, H.B., Kiehl, J.T.: Trace gas trends and their potential role in climate change. J. Geophys. Res. 90, 5547–5566 (1985)CrossRefGoogle Scholar
  49. Ramdriambelo, T., Baray, J.L., Baldy, S., Bremaud, P., Cautenet, S.: A case study of extreme tropospheric ozone contamination in the tropics using in-situ, satellite and meteorological data. Geophys. Res. Lett. 26(9), 1287–1290 (1999)CrossRefGoogle Scholar
  50. Randel, W.J., Park, M.: Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS). J. Geophys. Res. 111, D12314 (2006). doi: 10.1029/2005JD006490 CrossRefGoogle Scholar
  51. Scott, R., Cammas, J.-P.: Wave breaking and mixing at the sub-tropical tropopause. J. Atmos. Sci. 59(15), 2347–2361 (2002)CrossRefGoogle Scholar
  52. Sherwood, S.C., Dessler, A.E.: A model for transport across the tropical tropopause. J. Atmos. Sci. 58, 765–779 (2001)CrossRefGoogle Scholar
  53. Smit, H.G.J., Kley,D.: Jülich Ozone Sonde Intercomparison Experiment (JOSIE), WMO Global Atmosphere Watch report series, No. 130 (Technical Document No. 926), World Meteorological Organization, Geneva (1998).Google Scholar
  54. Stoller, P., et al.: Measurements of atmospheric layers from the NASA DC-8 and P-3B aircraft during PEM-Tropics A. J. Geophys. Res. 104, 5745–5764 (1999)CrossRefGoogle Scholar
  55. Thompson, A.M., Witte, J.C., Oltmans, S.J., Schmidlin, F.J., Logan, J.A., Fujiwara, M., Kirchhoff, V.W.J.H., Posny, F., Co-etzee, G., Hoeger, B., Kawakami, S., Ogawa, T.: The 1998–2000 SHADOZ (Southern Hemisphere Additional Ozonesondes) tropical ozone climatology. 2. Tropospheric variability and the zonal wave-one. J. Geophys. Res. 108(D2), 8241 (2003). doi: 10.1029/2002JD002241 CrossRefGoogle Scholar
  56. Thouret, V., Marenco, A., Nedelec, P., Grouhel, C.: Ozone climatologies at 9–12 km altitude as seen by the MOZAIC airborne program between September 1994 and August 1996. J. Geophys. Res. 103(D19), 25653–25679 (1998a)CrossRefGoogle Scholar
  57. Thouret, V., Marenco, A., Logan, J.A., Nedelec, P., Grouhel, C.: Comparison of ozone measurements from MOZAIC airborne program and the ozone sounding network at eight locations. J. Geophys. Res. 103(D19), 25695–25720 (1998b)CrossRefGoogle Scholar
  58. Wigley, T.M.L.: Relative contributions of different trace gases to the greenhouse effect. Clim. Monit. 16, 16–29 (1987)Google Scholar
  59. Worden, J., et al.: Observed vertical distribution of tropospheric ozone during the Asian summertime monsoon. J. Geophys. Res. 114, D13304 (2009). doi: 10.1029/2008JD010560 CrossRefGoogle Scholar
  60. Zachariasse, M., van Velthoven, P.F.J., Smit, H.G.J., Lelieveld, J., Mandal, T.K., Kelder, H.: Influence of stratospheric tropospheric exchange on tropopsheric ozone over the tropical Indian Ocean during the winter monsoon. J. Geophys. Res. 105(D12), 15403–15416 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Lokesh K. Sahu
    • 1
  • Shyam Lal
    • 2
  • Valérie Thouret
    • 3
  • Herman G. Smit
    • 4
  1. 1.Research Center for Advanced Science and TechnologyUniversity of TokyoTokyoJapan
  2. 2.Physical Research Laboratory (PRL)AhmedabadIndia
  3. 3.Laboratoire d’Aérologie, Unité Mixte de Recherche 5560Centre National de la Recherche Scientifique/Université Paul Sabatier, Observatoire Midi-PyrénéesToulouseFrance
  4. 4.Research Center Jülich, Institute for Chemistry of the Polluted Atmosphere (ICG-2)JülichGermany

Personalised recommendations