Skip to main content
Log in

Determination of ammonia emission rates from a tunnel ventilated chicken house using passive samplers and a Gaussian dispersion model

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Atmospheric deposition can provide a significant fraction of the nitrogen loading to coastal waters. The Delmarva Peninsula, on the eastern shore of the Chesapeake Bay, is a region with intense poultry production that may supply a significant source of atmospheric ammonia (NH3). There is a need to quantify ammonia NH3 from representative growing methods in this region in order to more accurately estimate agricultural NH3 emissions and to develop best management practices. In this study, NH3 emissions were determined at an 18,600-bird tunnel-ventilated chicken house using a modified sampling grid (a planar arrangement normal to the length of the house) with Ogawa passive samplers to characterize the emission plume downwind from the house. This improvement in the sampling strategy, compared to a previous study, simplified the inverse Gaussian plume analysis which improved the confidence in the emission factors. In this study, a total of four separate plume characterizations were conducted over the final 3 weeks of the 6-week broiler grow-out cycle. The mean emission factor observed at the tunnel-ventilated house, 0.13 g NH3–N/bird-day, was an order of magnitude lower than that previously observed at a nearby side-wall ventilated house. Although not all growing variables were measured, the large difference in emission factors between the two ventilation regimes suggest that modern, tunnel-ventilated houses may result in a significant decrease in NH3 emissions compared with traditional growing methods. This variability in emission factors underscores the need for characterizing chicken houses under various conditions and determining the factors that control these atmospheric emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aneja, V.P., Roelle, P.A., Murray, G.C., Southerland, J., Erisman, J.W., Fowler, D., Asman, W.A.H., Patni, N.: Atmospheric nitrogen compounds II: emissions, transport, transformation, deposition and assessment. Atmos. Environ. 35, 1903–1911 (2001)

    Article  Google Scholar 

  • Arogo, J., Westerman, W., Heber, A.J.: A review of ammonia emissions from confined swine feeding operations. Trans. ASAE 46(3), 805–817 (2003)

    Google Scholar 

  • Asman, W.A.H.: Factors influencing local dry deposition of gases with special reference to ammonia. Atmos. Environ. 32, 415–421 (1998)

    Article  Google Scholar 

  • Battye, R., Battye, W., Overcash, C., Fudge, S.: Development and selection of ammonia emission factors; EPA/600/R-94/190, Research Triangle Park, NC (1994)

  • Battye, R., et al.: Development and selection of ammonia emission factors. Office of Research and Development, US EPA, Washington (1994)

    Google Scholar 

  • Castro, M.S., Driscoll, C.: Atmospheric nitrogen deposition to estuaries in the mid-Atlantic and northeastern United States. Environ. Sci. Technol. 36, 3242–3249 (2002)

    Article  Google Scholar 

  • Chimka, C.T., Galloway, J.N., Cosby, B.J.: Ammonia and the Chesapeake Bay airshed. Chesapeake Bay Program, Scientific and Technical Advisory Committee Publication 97-1, 49 pp. (1997)

  • Copeland, C.: Air quality issues and animal agriculture: a primer. Congressional Research Service, CRS Report RL32948, The Library of Congress (2006a)

  • Copeland, C.: Air quality issues and animal agriculture: EPA’s Air Compliance Agreement. Congressional Research Service, CRS Report RL32947, The Library of Congress (2006b)

  • Dennis, R; Mathur, R.; Schwede, D.; Walker, J.T; Robarge, W: The fate and transport of ammonia at the local to regional level. In: Proceedings: Workshop on Agricultural Air Quality: State of the Science, Potomac, MD, June 5–8, p. 103 (2006)

  • Elliott, H.H., Collins, N.E.: Factors affecting ammonia release in broiler houses. Trans. ASAE 25(2), 413–424 (1982)

    Google Scholar 

  • Fowler, D., Pitcairn, C.E.R., Sutton, M.A., Flechard, C., Loubet, B., Coyle, M., Munro, R.C.: The mass budget of atmospheric ammonia in woodland within 1 km of livestock buildings. Environ. Pollut. 102, 343–348 (1998)

    Article  Google Scholar 

  • Liu, Z., Wang, L., Beasley, D.: Effect of litter moisture on ammonia emissions from broiler operations. In: Proceedings: Workshop on Agricultural Air Quality: State of the Science, Potomac, MD, June 5–8, p. 859 (2006)

  • McRae, G.J., Goodin, W.R., Seinfeld, J.H.: Development of a second-generation mathematical model for urban air pollution 1. Model formulation. Atmos. Environ. 16, 679–696 (1982)

    Article  Google Scholar 

  • Misselbrook, T.H., Vand der Weerden, T.H., Pain, B.F., Jarvis, S.C., Chambers, B.J., Smith, K.A., Phillips, V.R., Demmers, T.G.M.: Ammonia emission factors for UK agriculture. Atmos. Environ. 34(6), 871–880 (2000)

    Article  Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes in Fortran 77: the art of scientific computing. Cambridge University Press, New York (1992)

    Google Scholar 

  • Roadman, M.J., Scudlark, J.R., Meisinger, J.J., Ullman, W.J.: Validation of Ogawa passive samplers for the determination of gaseous ammonia concentrations in agricultural settings. Atmos. Environ. 32, 2317–2325 (2003)

    Article  Google Scholar 

  • Salas, W., Frolking, S., Li, C.: Air emissions from animal feeding operations: A Scientific Review And Assessment CARB ammonia and reactive gas emissions factors; Report AGS-61-02-01, California Farm Bureau Federation, 17 pp. (2002)

  • Scudlark, J.R., Jennings, J.J., Roadman, M.J., Savidge, K.B., Ullman, W.J.: Atmospheric nitrogen inputs to the Delaware Inland Bays: the role of ammonia. Environ. Pollut. 135, 433–443 (2005)

    Article  Google Scholar 

  • Seinfeld, J.H., Pandis, S.N.: Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New York (1998)

    Google Scholar 

  • Siefert, R.L., Scudlark, J.R., Potter, A.G., Simonsen, K.A., Savidge, K.B.: Characterization of atmospheric ammonia emissions from a commercial chicken house on the Delmarva Peninsula. Environ. Sci. Technol. 38, 2769–2778 (2004)

    Article  Google Scholar 

  • Strader, R., Davidson, C.: Ammonia emissions from agriculture and other sources. In: Proceedings: Workshop on Agricultural Air Quality: State of the Science, Potomac, MD, June 5–8, p. 2 (2006)

  • USDA: In: The National Agricultural Statistics Service. Available online at http://www.nass.usda.edu/. Cited July 2006 (2006)

  • US EPA: Review of emission factors and methodologies to estimate ammonia emissions from animal waste handling. US EPA, Research Triangle Park, NC (2002)

  • Walker, J.T., Aneja, V.P., Dickey, D.A.: Atmospheric transport and wet deposition of ammonium in North Carolina. Atmos. Environ. 34, 3407–3418 (2000)

    Article  Google Scholar 

  • Walker, J.T., Robarge, W.: Dry deposition of ammonia in the vicinity of a swine production facility. In: Proceedings: Workshop on Agricultural Air Quality: State of the Science, Potomac, MD, June 5–8, p. 101 (2006)

Download references

Acknowledgement

The US EPA, through a grant administered by the Chesapeake Bay Program, provided funding for this study. This report does not reflect the official views of the US Environmental Protection Agency, and any mention of trade names or commercial products does not constitute an endorsement or recommendation for use by the EPA. Additional funding was also provided by the Naval Academy Research Council through ORN grant N0001407WR20102. We also thank the farmer for his cooperation and use of his facilities to conduct this study and the reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald L. Siefert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siefert, R.L., Scudlark, J.R. Determination of ammonia emission rates from a tunnel ventilated chicken house using passive samplers and a Gaussian dispersion model. J Atmos Chem 59, 99–115 (2008). https://doi.org/10.1007/s10874-007-9082-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-007-9082-x

Keywords

Navigation