Journal of Atmospheric Chemistry

, Volume 54, Issue 2, pp 189–201 | Cite as

Daily, weekly and seasonal relationships among VOCs, NOx x and O3 in a semi-urban area near Barcelona

  • I. Filella
  • J. Peñuelas
Original Article


Daily, weekly, and seasonal patterns of O3, NOx x and VOCs and their relationship to meteorological conditions were studied in a semi-urban site near Barcelona by means of five-day long campaigns that included weekend and labor days in December, March, June, and October. The plant protection thresholds for ozone and NO2 were exceeded, respectively, on all the studied days in summer and on all the studied days. Ozone formation was predominantly local and relied on photochemical processes with VOCs playing a controlling role. Formaldehyde, acetaldehyde, methanol, toluene, isoprene, and acetone (in this order) presented the highest O3 formation potential during the studied periods. These results highlight the important role in O3 formation played by VOC species such as acetaldehyde, methanol, and acetone, that all have a significant biogenic component. Thus, these VOCs must be taken into account in the discussion of any ozone abatement strategy.


Ozone Volatile Organic Compound Ozone Concentration Ozone Level Ozone Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Carter, W.P.L.: Development of ozone reactivity scales for volatile organic compounds. J. Air Waste Manage. Assoc. 44, 881–899 (1994)Google Scholar
  2. Cojocariu, C., Escher, P., Häberle, K.H., Matyssek, R., Rennenberg, H., Kreuzwieser, J.: The effect of ozone on the emission of carbonyls from leaves of adult Fagus sylvatica. Plant, Cell Environ. 28(5), 603–611 (2005)CrossRefGoogle Scholar
  3. Filella, I., Peñuelas, J.: Daily, weekly, and seasonal time courses of VOC concentrations in a semi-urban area near Barcelona. Atmos. Environ. submitted (2006)Google Scholar
  4. Generalitat de Catalunya.: La qualitat de l'aire a Catalunya. (2002)
  5. Gimeno B.S., Peñuelas J., Porcuna J.L., Reinert R.A.: Biomonitoring ozone phitotoxicity in Eastern Spain. Water, Air Soil Pollut. 85, 1521–1526 (1995)CrossRefGoogle Scholar
  6. Holzinger, R., Sandoval-Soto, L., Rottenberger, S., Crutzen, P.J., Kesselmeier, J.: Emissions of volatile organic compounds from Quercus ilex L. measured by proton transfer reaction mass spectrometry under different environmental conditions. J. Geophys. Res. 105, 20573–20579 (2000)CrossRefGoogle Scholar
  7. IPCC.: Climate change: The scientific basis. In: Hougton, J.T., Dung, Y., Griggs, D.J., Noguer, M., Van der Linden, P.J., Dui, X., Maskell, K., Johson, C.A. (eds.) Third assessment report of intergovernamental panel on climate change. Cambridge University Press, Cambridge (2001)Google Scholar
  8. Jiménez P., Parra, R., Gassó, S., Baldasano, J.M.: Modeling the ozone weekend effect in very complex terrains: a case study in the northeastern Iberian Peninsula. Atmos. Environ. 39, 429–444 (2005)CrossRefGoogle Scholar
  9. Jorba, O.: Simulación de los campos de viento de la Península Ibérica y elárea geográfica de Catalunya con alta resolución espacial para distintas situaciones meteorológicas típicas. Doctoral Thesis. Universitat Politècnica de Catalunya (2005)Google Scholar
  10. Karl, T., Harley, P., Guenther, A., Rasmussen, R., Baker, B., Jardine, K., Nemitz, E.: The bi-directional exchange of oxygenated VOCs between a loblolly pine (Pinus taeda) plantation and the atmosphere. Atmos. Chem. Phys. 5, 3015–3031 (2005)CrossRefGoogle Scholar
  11. Lindinger, W., Hansel, A., Jordan, A.: On-line monitoring of volatile organic compounds at pptv levels by means of Proton-Transfer-Reaction Mass Spectrometry (PTR-MS). Medical applications, food control and environmental research. Int. J. Mass Spectrom. Ion Processes 173, 191–241 (1998)CrossRefGoogle Scholar
  12. Llusià, J., Peñuelas, J., Gimeno, B.S.: Seasonal and species-specific Mediterranean plant VOC emissions by Mediterranean woody plant to elevated ozone concentrations. Atmos. Environ. 36, 3931–3938 (2002)CrossRefGoogle Scholar
  13. Lefohn, A.S. (Ed.): Surface Ozone Exposures and their Effects on Vegetation. Lewis Publishers, Chelsea (1992)Google Scholar
  14. Logan, J.A.: Tropospheric ozone: seasonal behaviour, trends, and anthropogenic influence. J. Geophys. Res. 90(D6), 10463–10482 (1985)CrossRefGoogle Scholar
  15. Monks, P.S.: A review of the observations and origins of the spring ozone maximum. Atmos. Environ. 34, 3545–3561 (2000)CrossRefGoogle Scholar
  16. Na, K., Kim, Y.P., Moon, K.C.: Diurnal characteristics of volatile organic compounds in the Seoul atmosphere. Atmos. Environ. 37, 733–742 (2003)CrossRefGoogle Scholar
  17. Parra, R., Gasso, S., Baldasano, J.M.: Estimating the biogenic emissions of non-methane volatile organic. Sci. Total Environ. 329, 241–259 (2004)CrossRefGoogle Scholar
  18. Peleg, M., Luria, M., Sharf, G., Vanger, A., Kallos, G., Kotroni, V., Lagouvardos, K., Varinou, M.: Observational evidence of an ozone episode over Greater Athens Area. Atmos. Environ. 31, 3969–3983 (1997)CrossRefGoogle Scholar
  19. Peñuelas J.: El aire de la vida. Ariel, Barcelona, pp 260 (1993)Google Scholar
  20. Peñuelas J., Llusià J., Gimeno, B.S.: Effects of ozone concentrations on biogenic volatile organic compounds emission in the Mediterranean region. Environ. Pollut. 105, 17–23 (1999)CrossRefGoogle Scholar
  21. Peñuelas, J., Filella, I., Stefanescu, C., Llusià, J.: Caterpillars of Euphydryas aurinia (Lepidoptera: Nymphalidae) feeding on Succisa pratensis leaves induce large foliar emissions of methanol. New Phytol. 167, 851–857 (2005)CrossRefGoogle Scholar
  22. Ribas, A., Peñuelas, J.: Temporal patterns of surface ozone levels in different habitats of the North Western Mediterranean basin. Atmos. Environ. 38, 985–992 (2004)CrossRefGoogle Scholar
  23. Ryerson, T.B., Trainer, M., Holloway, J.S., Parrish, D.D., Huey, L.G., Sueper, D.T., Frost, G.J., Donnelly, S.G., Schauffler, S., Atlas, E.L., Kuster, W.C., Goldan, P.D., Huebler, G., Meagher, J.F., Fehsenfeld, F.C.: Observations of ozone formation in power plant plumes and implications for ozone control strategies. Science 292, 719–723 (2001)CrossRefGoogle Scholar
  24. Sanz, M.J., Calatayud, V., Calvo, E.: Spatial pattern of ozone injury in Aleppo pine related to air pollution dynamics in a coastal-mountain region of eastern Spain. Environ. Pollut. 108, 239–247 (2000)CrossRefGoogle Scholar
  25. Tani, A., Hayward, S., Hewitt, C.N.: Measurement of monoterpenes and related compounds by proton transfer reaction-mass spectrometry (PTR-MS). Int. J. Mass Spectrom. 223–224, 561–578 (2003)Google Scholar
  26. Toll, A., Baldasano, J.M.: Modelling of photochemical air pollution in the Barcelona area with highly disaggregated anthropogenic and biogenic emissions. Atmos. Environ. 34, 3069–3084 (2000)CrossRefGoogle Scholar
  27. WHO.: Air Quality Guidelines for Europe, 2nd Edition. World Health Organisation, Regional Office for Europe, Copenhagen. WHO Regional Publications, 91 (2000)Google Scholar
  28. Wannaz, E.D., Zygadlo, J.A., Pignata, M.L.: Air pollutants, effect on monoterpenes composition and foliar chemical parameters in Schinus areira L. Sci. Total Environ. 305(1–3), 177–193 (2003)CrossRefGoogle Scholar
  29. Zhang, R., Lei, W., Tie, X., Hess, P.: Industrial emissions cause extreme urban ozone diurnal variability. Proc. Natl. Acad. Sci. 101, 6346–6635 (2004)CrossRefGoogle Scholar
  30. Ziomas, I.C., Gryning, S.E., Borsteing, R.D.: The Mediterranean campaign of photochemical tracers–transport and chemical evolution (MEDCAPHOT-TRACE), Athens, Greece 1994–1995, Atmos. Environ. 32, 2043–2326 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2006

Authors and Affiliations

  1. 1.Unitat d'Ecofisiologia CSIC-CEAB-CREAF, CREAF (Center de Recerca Ecològica i Aplicacions Forestals)Universitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations