Journal of Atmospheric Chemistry

, Volume 54, Issue 1, pp 67–87 | Cite as

Parameterization of Ozone Photolysis Frequency in the Lower Troposphere Using Data from Photodiode Array Detector Spectrometers

  • Evelyn Jäkel
  • Manfred Wendisch
  • Barry L. Lefer


Spectroradiometers using photodiode array detectors (PDAs) are increasingly applied for airborne and ground-based atmospheric measurements of spectral actinic flux densities due to their high time resolution (less than one second). However they have limited sensitivity of ultraviolet (UV) radiation for wavelengths less than about 305 nm. This results in uncertainties of ozone photolysis frequencies derived from spectral actinic flux density measurements using PDA spectrometers. To overcome this limitation a parameterization method is introduced which extrapolates the data towards the wavelength range of limited sensitivity of the PDA spectrometers (less than about 305 nm). The parameterization is based on radiative transfer simulations and is valid for measurements in the lower troposphere. The components of the suggested parameterization are the lower threshold wavelength of the PDA spectrometer, the slant ozone column (ratio of the total ozone column and the cosine of the solar zenith angle), and the ambient temperature. Tests of the parameterization with simulated actinic flux density spectra have revealed an uncertainty of the derived ozone photolysis frequency of ±5%. Field comparisons of the parameterization results with independent measurements of the ozone photolysis frequency were within ±10% for solar zenith angles less than 70^∘. Finally the parameterization was applied to airborne measurements to emphasize the advantage of high time resolution of PDA spectrometers to study ozone photolysis frequency fields in inhomogeneous cloud condtitions.

Key words

actinic flux photolysis frequency radiative transfer spectroradiometer UV radiation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, G., Clough, S., Kneizys, F., Chetwynd, J., and Shettle, E., 1986: AFGL atmospheric constituent profiles (0–120 km), AFGL-TR-86-0110. Air Force Geophys. Lab., Hanscom Air Force Base, Bedford, Mass.Google Scholar
  2. Atkinson, R., Baulch, D. L., Cox, R. A., Kerr, J. A., Rossi, M., and Troe, J., 1997: Evaluated kinetic and photochemical data from atmospheric chemistry, Supplement V., J. Phys. Chem. Ref. Data 26, 521–1011.Google Scholar
  3. Bauer, D. L., Ottone, D., and Hynes, A. J., 2000: O(1D) quantum yields from O3 photolysis in the near UV region between 305 and 375 nm, Phys. Chem. 2, 1421–1424.CrossRefGoogle Scholar
  4. Bowker, D. E., Davis, R. E., Myrik, D. L., Stacy, K., and Jones, W. T., 1985: Spectral reflectance of natural targets for use in remote sensing studies, NASA Reference Publ. No. 1139.Google Scholar
  5. Crawford, J., Shetter, R. E., Lefer, B. L., Cantrell C. A., Junkermann, W., Madronich, S., and Calvert, J. G., 2003: Cloud impacts on UV spectral actinic flux observed during IPMMI, J. Geophys. Res. 108, doi:10.1029/2002JD002731.Google Scholar
  6. Cantrell, C. A., Calvert, J. G., Shetter, R. E., Lefer, B. L., and Edwards, G. D., 2003: Overview and conclusions of the International Photolysis Frequency Measurement and Modeling Intercomparison (IPMMI) study, J. Geophys. Res. 108, doi:10.1029/2002JD002962.Google Scholar
  7. Daumont, D., Brion, J., Charbonnier, J., and Malicet, J., 1992: Ozone UV Spectroscopy. I. Absorption cross-sections at room temperature, Atmospheric Ozone, Proceedings of the Quadrennial Ozone Symposium, Greece 15, 145–155.Google Scholar
  8. Eckstein, E., Perner, D., Brühl, C., and Trautmann, T., 2003: A new actinic flux 4 π-spectroradiometer: Instrument design and application to clear sky and broken cloud conditions, Atmos. Chem. Phys. 3, 1965–1979.Google Scholar
  9. Edwards, G. D. and Monks, P. S., 2003: Performance of a single-monochromator diode array spectroradiometer for the determination of actinic flux and atmospheric photolysis frequencies, J. Geophys. Res. 108, doi:10.1029/2002JD002844.Google Scholar
  10. Ehhalt, D. H., 1999: Photooxidation of trace gases in the troposphere, Phys. Chem. Chem. Phys. 1, 5401–5408.CrossRefGoogle Scholar
  11. Feister, U. and Grewe, R., 1995: Spectral albedo measurements in the UV and Visible region over different types of surfaces, Photochem. Photobiol. 62, 736–744.CrossRefGoogle Scholar
  12. Hofzumahaus, A., Kraus, A., and Müller, M., 1999: Solar actinic spectroradiometry: A technique for measuring photolyis frequencies in the atmosphere, Appl. Opt. 38, 4443–4460.CrossRefGoogle Scholar
  13. Jäkel, E., 2005: An airborne system for fast measurements of uwelling and downwelling spectral actinic flux densities, PhD thesis, University of Leipzig, Germany, 129 pp.Google Scholar
  14. Jäkel, E., Wendisch, M., Blumthaler, M., Schmitt, R., and Webb, A.R., 2005a: A CCD spectroradiometer for ultraviolet actinic radiation measurements, submitted to J. Atmos. Oceanic Technol.Google Scholar
  15. Jäkel, E., Wendisch, M., Kniffka, A., and Trautmann, T., 2005b: Airborne system for fast measurements of upwelling and downwelling actinic flux densities, Appl. Opt. 44, 434–444.CrossRefGoogle Scholar
  16. Kanaya, Y., Kajii, Y., and Akimoto, H., 2003: Solar actinic flux and photolysis frequency determinations by radiometers and a radiative transfer model at Rishiri Island: Comparisons, cloud effects, and detection of an aerosol plume from Russian forest fires, Atmos. Environ. 37, 2463–2475.CrossRefGoogle Scholar
  17. Keil, A., Wendisch, M., and Brügemann, E., 2001: Measured profiles of aerosol particle absorption and its influence on clear-sky solar radiative forcing, J. Geophys. Res. 106, 1237–1247.CrossRefGoogle Scholar
  18. Kraus, A. and Hofzumahaus, A., 1998: Field measurements of atmospheric photolysis frequencies for O3, NO2, HCHO, CH3CHO, H2O2, and HONO by UV spectroradiometry, J. Atmos. Chem. 31, 161–180.CrossRefGoogle Scholar
  19. Kurucz, R. L., 1992: Synthetic Infrared Spectra Presented at IAU Symposium 154, Kluwer, Acad., Norwell, MA., 523–531.Google Scholar
  20. Kylling, A., Stamnes, K., and Tsay, S. C., 1995: A reliable and efficient twostream algorithm for spherical radiative transfer: Documentation of accuracy in realistic layered media, J. Atmos. Chem. 21, 115–150.CrossRefGoogle Scholar
  21. Kylling, A., Webb, A. R., Kift, R., Gobbi, G. P., et al.., 2005: Spectral actinic flux in the lower troposphere: Measurements and 1D simulations for cloudless, broken cloud and overcast situations, Atmos. Chem. Phys. 5, 1975–1997.Google Scholar
  22. Lefer, B. L., Hall, S. R., Cinquini, L., Shetter, R. E., Barrick, J. D., and Crawford, J. H., 2001: Comparison of airborne NO2 photolysis frequency measurements during PEM-Tropics B, J. Geophys. Res. 106, 32645–32656.CrossRefGoogle Scholar
  23. Levy, H., 1972: Photochemistry of the lower troposphere, Planet. Space Sci. 20, 919–935.CrossRefGoogle Scholar
  24. Madronich, S., 1987: Photodissociation in the atmosphere: 1. Actinic flux and the effects of ground reflections and clouds, J. Geophys. Res. 92, 9740–9752.CrossRefGoogle Scholar
  25. Matsumi, Y., Comes, F. J., Hancock, G., Hofzumahaus, A., Hynes, A. J., Kawasaki, M., and Ravishankara, A. R., 2002: Quantum yields for production of O(1D) in the ultraviolet photolysis of ozone: Recommendations based on evaluation of laboratory data, J. Geophys. Res. 107, doi:10.1029/2001JD000510.Google Scholar
  26. Mayer, B. and Kylling, A., 2005: Technical note: The libRadtran software package for radiative transfer calculations – description and examples of use, Atmos. Chem. Phys. 5, 1975–1997.CrossRefGoogle Scholar
  27. Molina, L. T. and Molina, M. J., 1986: Absolute absorption cross Sections of ozone in the 185- to 350-nm wavelength range, J. Geophys. Res. 91, 14501–14508.CrossRefGoogle Scholar
  28. Sander, S. P., Friedl, R.R., Golden, D. M., Kurylo, M. J., Huie, R. E., Orkin, V. L., Moortgat, G. K., Ravishankara, A. R., Kolb, C. E., Molina, M. J., and Finlayson-Pitts, B. J., 2003: Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, Evaluation Number 12: Update of Key Reactions, Evaluation 14, JPL Publ, 02–25, NASA-JPL JPL Publication, California Institute of Technology, Jet Propulsion Laboratory, Pasadena, California.Google Scholar
  29. Shetter, R. E. and Müller, M., 1999, Photolysis frequency measurements using actinic flux spectroradiometry during PEM-Tropics mission: Instrumentation description and some results, J. Geophys. Res. 104, 5647–5661.CrossRefGoogle Scholar
  30. Stamnes, K. S., Tsay, S., Wiscombe, W., and Jayaweera, K., 1988: Numerically stable algorithm for discrete-ordinate-method radiative transfer model in multiple scattering and emitting layered media, Appl. Opt. 27, 2502–2509.CrossRefGoogle Scholar
  31. Thiel, S., Blumthaler, M., Jäkel, E., Scheirer, R., Ammannato, L., Bais, A., Bandy, B., Bohn, B, Engelsen, O., Gobbi, G. P., Junkermann, W., Kazadzis, S., Kift, R., Kjeldstad, B., Kouremeti, N., Kylling. A., Mayer, B., Monks, P., Reeves, C., Schallhart, B., Schmidt, S., Schmitt, R., Schreder, J., Silbernagl, R., Topaloglou, C., Thorseth, T. M., Webb, A. R., and Wendisch, M., 2006: Influence of clouds on the spectral actinic flux in the lower troposphere (INSPECTRO): Overview of the field campaigns, In Preperation for Atmos. Chem. Phys..Google Scholar
  32. Wendisch, M., Müller, D., Schell, D., and Heintzenberg, J., 2001: An airborne spectral albedometer with active horizontal stabilization, J. Atmos. Oceanic Technol. 18, 1856–1866.CrossRefGoogle Scholar
  33. Wendisch, M., Pilewskie, P., Jäkel, E., Schmidt, S., Pommier, J., Howard, S., Jonsson, H. H., Guan, H., Schröder, M., and Mayer, B., 2004: Airborne measurements of areal spectral surface albedo over different sea and land surfaces, J. Geophys. Res. 109, doi:10.1029/2003JD004392.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Evelyn Jäkel
    • 1
    • 2
  • Manfred Wendisch
    • 1
  • Barry L. Lefer
    • 3
    • 4
  1. 1.Leibniz-Institute for Tropospheric Research (IfT)LeipzigGermany
  2. 2.National Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
  3. 3.Atmospheric Chemistry Division (ACD)National Center for Atmospheric Research (NCAR)BoulderUSA
  4. 4.Department of GeosciencesUniversity of HoustonHoustonUSA

Personalised recommendations