Skip to main content
Log in

Parameterization of Ozone Photolysis Frequency in the Lower Troposphere Using Data from Photodiode Array Detector Spectrometers

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Spectroradiometers using photodiode array detectors (PDAs) are increasingly applied for airborne and ground-based atmospheric measurements of spectral actinic flux densities due to their high time resolution (less than one second). However they have limited sensitivity of ultraviolet (UV) radiation for wavelengths less than about 305 nm. This results in uncertainties of ozone photolysis frequencies derived from spectral actinic flux density measurements using PDA spectrometers. To overcome this limitation a parameterization method is introduced which extrapolates the data towards the wavelength range of limited sensitivity of the PDA spectrometers (less than about 305 nm). The parameterization is based on radiative transfer simulations and is valid for measurements in the lower troposphere. The components of the suggested parameterization are the lower threshold wavelength of the PDA spectrometer, the slant ozone column (ratio of the total ozone column and the cosine of the solar zenith angle), and the ambient temperature. Tests of the parameterization with simulated actinic flux density spectra have revealed an uncertainty of the derived ozone photolysis frequency of ±5%. Field comparisons of the parameterization results with independent measurements of the ozone photolysis frequency were within ±10% for solar zenith angles less than 70^∘. Finally the parameterization was applied to airborne measurements to emphasize the advantage of high time resolution of PDA spectrometers to study ozone photolysis frequency fields in inhomogeneous cloud condtitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, G., Clough, S., Kneizys, F., Chetwynd, J., and Shettle, E., 1986: AFGL atmospheric constituent profiles (0–120 km), AFGL-TR-86-0110. Air Force Geophys. Lab., Hanscom Air Force Base, Bedford, Mass.

  • Atkinson, R., Baulch, D. L., Cox, R. A., Kerr, J. A., Rossi, M., and Troe, J., 1997: Evaluated kinetic and photochemical data from atmospheric chemistry, Supplement V., J. Phys. Chem. Ref. Data 26, 521–1011.

    Google Scholar 

  • Bauer, D. L., Ottone, D., and Hynes, A. J., 2000: O(1D) quantum yields from O3 photolysis in the near UV region between 305 and 375 nm, Phys. Chem. 2, 1421–1424.

    Article  Google Scholar 

  • Bowker, D. E., Davis, R. E., Myrik, D. L., Stacy, K., and Jones, W. T., 1985: Spectral reflectance of natural targets for use in remote sensing studies, NASA Reference Publ. No. 1139.

  • Crawford, J., Shetter, R. E., Lefer, B. L., Cantrell C. A., Junkermann, W., Madronich, S., and Calvert, J. G., 2003: Cloud impacts on UV spectral actinic flux observed during IPMMI, J. Geophys. Res. 108, doi:10.1029/2002JD002731.

    Google Scholar 

  • Cantrell, C. A., Calvert, J. G., Shetter, R. E., Lefer, B. L., and Edwards, G. D., 2003: Overview and conclusions of the International Photolysis Frequency Measurement and Modeling Intercomparison (IPMMI) study, J. Geophys. Res. 108, doi:10.1029/2002JD002962.

    Google Scholar 

  • Daumont, D., Brion, J., Charbonnier, J., and Malicet, J., 1992: Ozone UV Spectroscopy. I. Absorption cross-sections at room temperature, Atmospheric Ozone, Proceedings of the Quadrennial Ozone Symposium, Greece 15, 145–155.

  • Eckstein, E., Perner, D., Brühl, C., and Trautmann, T., 2003: A new actinic flux 4 π-spectroradiometer: Instrument design and application to clear sky and broken cloud conditions, Atmos. Chem. Phys. 3, 1965–1979.

    Google Scholar 

  • Edwards, G. D. and Monks, P. S., 2003: Performance of a single-monochromator diode array spectroradiometer for the determination of actinic flux and atmospheric photolysis frequencies, J. Geophys. Res. 108, doi:10.1029/2002JD002844.

    Google Scholar 

  • Ehhalt, D. H., 1999: Photooxidation of trace gases in the troposphere, Phys. Chem. Chem. Phys. 1, 5401–5408.

    Article  Google Scholar 

  • Feister, U. and Grewe, R., 1995: Spectral albedo measurements in the UV and Visible region over different types of surfaces, Photochem. Photobiol. 62, 736–744.

    Article  Google Scholar 

  • Hofzumahaus, A., Kraus, A., and Müller, M., 1999: Solar actinic spectroradiometry: A technique for measuring photolyis frequencies in the atmosphere, Appl. Opt. 38, 4443–4460.

    Article  Google Scholar 

  • Jäkel, E., 2005: An airborne system for fast measurements of uwelling and downwelling spectral actinic flux densities, PhD thesis, University of Leipzig, Germany, 129 pp.

  • Jäkel, E., Wendisch, M., Blumthaler, M., Schmitt, R., and Webb, A.R., 2005a: A CCD spectroradiometer for ultraviolet actinic radiation measurements, submitted to J. Atmos. Oceanic Technol.

  • Jäkel, E., Wendisch, M., Kniffka, A., and Trautmann, T., 2005b: Airborne system for fast measurements of upwelling and downwelling actinic flux densities, Appl. Opt. 44, 434–444.

    Article  Google Scholar 

  • Kanaya, Y., Kajii, Y., and Akimoto, H., 2003: Solar actinic flux and photolysis frequency determinations by radiometers and a radiative transfer model at Rishiri Island: Comparisons, cloud effects, and detection of an aerosol plume from Russian forest fires, Atmos. Environ. 37, 2463–2475.

    Article  Google Scholar 

  • Keil, A., Wendisch, M., and Brügemann, E., 2001: Measured profiles of aerosol particle absorption and its influence on clear-sky solar radiative forcing, J. Geophys. Res. 106, 1237–1247.

    Article  Google Scholar 

  • Kraus, A. and Hofzumahaus, A., 1998: Field measurements of atmospheric photolysis frequencies for O3, NO2, HCHO, CH3CHO, H2O2, and HONO by UV spectroradiometry, J. Atmos. Chem. 31, 161–180.

    Article  Google Scholar 

  • Kurucz, R. L., 1992: Synthetic Infrared Spectra Presented at IAU Symposium 154, Kluwer, Acad., Norwell, MA., 523–531.

  • Kylling, A., Stamnes, K., and Tsay, S. C., 1995: A reliable and efficient twostream algorithm for spherical radiative transfer: Documentation of accuracy in realistic layered media, J. Atmos. Chem. 21, 115–150.

    Article  Google Scholar 

  • Kylling, A., Webb, A. R., Kift, R., Gobbi, G. P., et al.., 2005: Spectral actinic flux in the lower troposphere: Measurements and 1D simulations for cloudless, broken cloud and overcast situations, Atmos. Chem. Phys. 5, 1975–1997.

    Google Scholar 

  • Lefer, B. L., Hall, S. R., Cinquini, L., Shetter, R. E., Barrick, J. D., and Crawford, J. H., 2001: Comparison of airborne NO2 photolysis frequency measurements during PEM-Tropics B, J. Geophys. Res. 106, 32645–32656.

    Article  Google Scholar 

  • Levy, H., 1972: Photochemistry of the lower troposphere, Planet. Space Sci. 20, 919–935.

    Article  Google Scholar 

  • Madronich, S., 1987: Photodissociation in the atmosphere: 1. Actinic flux and the effects of ground reflections and clouds, J. Geophys. Res. 92, 9740–9752.

    Article  Google Scholar 

  • Matsumi, Y., Comes, F. J., Hancock, G., Hofzumahaus, A., Hynes, A. J., Kawasaki, M., and Ravishankara, A. R., 2002: Quantum yields for production of O(1D) in the ultraviolet photolysis of ozone: Recommendations based on evaluation of laboratory data, J. Geophys. Res. 107, doi:10.1029/2001JD000510.

  • Mayer, B. and Kylling, A., 2005: Technical note: The libRadtran software package for radiative transfer calculations – description and examples of use, Atmos. Chem. Phys. 5, 1975–1997.

    Article  Google Scholar 

  • Molina, L. T. and Molina, M. J., 1986: Absolute absorption cross Sections of ozone in the 185- to 350-nm wavelength range, J. Geophys. Res. 91, 14501–14508.

    Article  Google Scholar 

  • Sander, S. P., Friedl, R.R., Golden, D. M., Kurylo, M. J., Huie, R. E., Orkin, V. L., Moortgat, G. K., Ravishankara, A. R., Kolb, C. E., Molina, M. J., and Finlayson-Pitts, B. J., 2003: Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, Evaluation Number 12: Update of Key Reactions, Evaluation 14, JPL Publ, 02–25, NASA-JPL JPL Publication, California Institute of Technology, Jet Propulsion Laboratory, Pasadena, California.

  • Shetter, R. E. and Müller, M., 1999, Photolysis frequency measurements using actinic flux spectroradiometry during PEM-Tropics mission: Instrumentation description and some results, J. Geophys. Res. 104, 5647–5661.

    Article  Google Scholar 

  • Stamnes, K. S., Tsay, S., Wiscombe, W., and Jayaweera, K., 1988: Numerically stable algorithm for discrete-ordinate-method radiative transfer model in multiple scattering and emitting layered media, Appl. Opt. 27, 2502–2509.

    Article  Google Scholar 

  • Thiel, S., Blumthaler, M., Jäkel, E., Scheirer, R., Ammannato, L., Bais, A., Bandy, B., Bohn, B, Engelsen, O., Gobbi, G. P., Junkermann, W., Kazadzis, S., Kift, R., Kjeldstad, B., Kouremeti, N., Kylling. A., Mayer, B., Monks, P., Reeves, C., Schallhart, B., Schmidt, S., Schmitt, R., Schreder, J., Silbernagl, R., Topaloglou, C., Thorseth, T. M., Webb, A. R., and Wendisch, M., 2006: Influence of clouds on the spectral actinic flux in the lower troposphere (INSPECTRO): Overview of the field campaigns, In Preperation for Atmos. Chem. Phys..

  • Wendisch, M., Müller, D., Schell, D., and Heintzenberg, J., 2001: An airborne spectral albedometer with active horizontal stabilization, J. Atmos. Oceanic Technol. 18, 1856–1866.

    Article  Google Scholar 

  • Wendisch, M., Pilewskie, P., Jäkel, E., Schmidt, S., Pommier, J., Howard, S., Jonsson, H. H., Guan, H., Schröder, M., and Mayer, B., 2004: Airborne measurements of areal spectral surface albedo over different sea and land surfaces, J. Geophys. Res. 109, doi:10.1029/2003JD004392.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelyn Jäkel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jäkel, E., Wendisch, M. & Lefer, B.L. Parameterization of Ozone Photolysis Frequency in the Lower Troposphere Using Data from Photodiode Array Detector Spectrometers. J Atmos Chem 54, 67–87 (2006). https://doi.org/10.1007/s10874-006-9014-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-006-9014-1

Key words

Navigation