Journal of Atmospheric Chemistry

, Volume 52, Issue 1, pp 45–62 | Cite as

Characterisation of Soot Emitted by Domestic Heating, Aircraft and Cars Using Diesel or Biodiesel

  • Anne Smekens
  • Ricardo Henrique Moreton Godoi
  • Patrick Berghmans
  • René Van Grieken


The characterisation of aggregates, like soot, firstly requires the determination of the size distribution of the primary particles. The primary particle size of combustion generated aggregates depends upon the combustion environment and the formation conditions, such as temperature, pressure and fuel-to-air ratio, among others. Since the combustion characteristics are different in the different types of burners, the characterisation of primary particles may offer the possibility to distinguish soot from different sources. In this paper, we present the signature of the primary particles and the aggregates of soot emitted by cars using diesel or biodiesel, by domestic heating, and by aircraft exhausts, which can be considered as the major sources as derived from measurements on transmission electron micrographs. The size distributions of all aggregates types with different aerodynamic diameter were log-normal and quasi-monodisperse. The size distribution of the primary particles for soot emitted by different sources showed minor differences. However, a comparison between the diameter of the primary particles and those obtained using a standard method for carbon black revealed discrepancies. The median diameter of the primary particles was combined with the median number of primary particles in an aggregate to calculate the relative particle surface area available for adsorption. In a similar way, the relative specific surface area was determined. The surface area was measured using the Brunauer-Emmett-Teller (B.E.T.) nitrogen adsorption method and the relative surface area available for adsorption was calculated.

Key words

diesel morphology primary particles soot transmission electron microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ASTM D3849-95a, 1999: Standard Test Method for Carbon Black, in Primary Aggregate Dimensions from Electron Microscopy Image Analysis, Annual Book of Standards, American Society for Testing and Materials, Philadelphia, 612.Google Scholar
  2. Berner, A., Sidla, S., Galambos, Z., Kruisz, C., Hitzenberger, R., ten Brink, H. M., and Kos, G. P. A., 1996: Modal character of atmospheric black carbon size distributions, J. Geophys. Res. 101, 19559–19565.CrossRefGoogle Scholar
  3. Bérubé, K. A., Jones, T. P., Williamson, B. J., Winters, C., Morgan, A. J., and Richards, R. J., 1999: Physicochemical characterisation of diesel exhaust particles: Factor for assessing biological activity, Atmos. Environ. 33, 1599–1614.CrossRefGoogle Scholar
  4. Blake, D. F. and Kato, K., 1995: Latitudinal distribution of black carbon soot in the upper and lower stratosphere, J. Geophys. Res. 100, 7195–7202.CrossRefGoogle Scholar
  5. Brasil, A. M., Farias, T. L., and Carvalho, M. G., 1999: A recipe for image characterization of fractal-like aggregates, J. Aerosol Sci. 30, 1379–1389.CrossRefGoogle Scholar
  6. Brasil, A. M., Farias, T. L., Carvalho, M. G., and Koylu, U. O., 2001: Numerical characterization of the morphology of aggregated particles, J. Aerosol Sci. 32, 489–508.CrossRefGoogle Scholar
  7. Cabot., 1999: Product Guide, Cabot European Rubber Black Division, Issue no. 2.Google Scholar
  8. Chughtai, A. R., Williams, G. R., Atteya, M. M. O., Miller, N. J., and Smith, D. M., 1999: Carbonaceous particle hydration, Atmos. Environ. 33, 2679–2687.CrossRefGoogle Scholar
  9. Clague, A. D. H., Donnet, J. B., Wang, T. K., and Peng, J. C. M., 1999: A comparison of diesel engine soot with carbon black, Carbon 37, 1553–1565.CrossRefGoogle Scholar
  10. Covitch, M. J., 1989: Oil thickening in the Mack T-7 engine test II – Effects of fuel composition on soot chemistry. SAE paper no. 880259, Society of Automotive Engineers. Warrendale, PA.Google Scholar
  11. De Santis, F. and Allegrini, I., 1992: Heterogeneous reactions of SO2 and NO2 on carbonaceous surfaces, Atmos. Environ. 26A, 3061–3064.Google Scholar
  12. Harris, S. J. and Maricq, M. M., 2001: Signature size distributions for diesel and gasoline engine exhaust particulate matter, J. Aerosol Sci. 32, 749–764.CrossRefGoogle Scholar
  13. Herd, C. R., McDonald, G. C., and Hess, W. M., 1992: Morphology of carbon – black aggregates: Fractal versus Euclidean dimension, Rubber Chem. Technol. 65, 107–129.Google Scholar
  14. Hess, W. M. and McDonald, G. C., 1983: Improved particle size measurements on pigments for rubber, Rubber Chem. Technol. 56, 892–917.Google Scholar
  15. Hueglin, C., Scherrer, L., and Burtscher, H., 1997: An accurate continuously adjustable dilution system (1:10 to 1:10E4) for submicron aerosols, J. Aerosol Sci. 28, 1049–1055.CrossRefGoogle Scholar
  16. Ishiguro, T., Suzuki, N., Fujitani, Y., and Morimoto, H., 1991: Microstructural changes of diesel soot during oxidation, Combust. Flame. 85, 1–6.CrossRefGoogle Scholar
  17. Jing, L., Forss, A. M., Bach, C., Graf, R., and Eggenberger, U., 1996: Umfassende, wirkungsorganisierte Charakterisierung von Partikeln aus Dieselabgasen, Gefahrstoffe Reinhaltung der Luft. 56, 139–145.Google Scholar
  18. Kärcher, B., Peter, T., Biermann, U. M., and Schumann, U., 1996: The initial composition of jet condensation trails, J. Atmos. Sci. 53, 3066–3083.CrossRefGoogle Scholar
  19. Kärcher, B., 1997: Heterogeneous chemistry in aircraft wakes: Constraints for uptake coefficients, J. Geophys. Res. 102, 19119–19135.CrossRefGoogle Scholar
  20. Kerminen, V. M., Mäkelä, T. E., Ojanen, C. H., Hillamo, R. E., Vilhunen, J. K., Rantanen, L., Havers, N., von Bohlen, A., and Klockow, D., 1997: Characterization of the particulate phase in the exhaust from a diesel car, Environ. Sci. Technol. 31, 1883–1889.CrossRefGoogle Scholar
  21. Klein, H., Lox, E., Kreuzer, T., Kawanami, M., Ried, T., and Bächmann, K., 1998: Diesel particulate emissions of passenger cars – new insights into structural changes during the process of exhaust aftertreatment using diesel oxidation catalysts. SAE paper no. 980196. Society of Automotive Engineers. Warrendale, PA.Google Scholar
  22. Kops, J., Hermans, L., and van de Vate, J. F., 1974: Calibration of a Stöber centrifugal aerosol spectrometer, Aerosol Sci. 5, 379–386.CrossRefGoogle Scholar
  23. Lammel, G. and Novakov, T., 1995: Water nucleation properties of carbon black and diesel soot particles, Atmos. Environ. 29, 813–823.CrossRefGoogle Scholar
  24. Marple, V. A., Rubow, K. L., and Olson, B. A., 1993: Principles, Techniques, and Applications, in: K. Willeke and P. A. Baron (eds.), Aerosol Measurements, New York, NY: Van Nostrand-Reinhold, 206–232.Google Scholar
  25. McAughey, J. J., 1997: Regional Lung Deposition and Dose of Ambient Particulate in Humans by Particle Mass and Number. Research Report, AEA Technology, Aerosol Science Centre, Oxfordshire, UK.Google Scholar
  26. Okada, K., Ikegami, M., Uchino, O., Nikaidou, Y., Zaizen, Y., Tsutsumi, Y., and Makino, Y., 1992: Extremely high proportions of soot particles in the upper troposphere over Japan, Geophys. Res. Lett. 19, 921–924.Google Scholar
  27. Petzold, A. and Schröder, F. P., 1998: Jet engine exhaust aerosol characterization, Aerosol Sci. Tech. 28, 62–76.Google Scholar
  28. Pope, C. A., Thun, M. J., Namboodriri, M. M., Dockery, D. W., Evans, J. S., Speizer, F. E., and Heath, C. W., 1995: Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults, Am. J. Resp. Crit. Care. 151, 669–674.Google Scholar
  29. Pott, F., 1991: Dieselmotorabgas – Tierexperimentelle Ergebnisse zur Risikoabschätzung. In Krebserzeugende Stoffe in der Umwelt, Risiko, Minimierung, 211, VDI Verlag, Düsseldorf.Google Scholar
  30. Roquerol, F., Roquerol, J., and Sing, K., 1999: Adsorption by Powders & Porous Solids. Academic Press, London.Google Scholar
  31. Schraml, S., Will, S., and Leipertz, A., 1999: Simultaneous measurement of soot mass concentration and primary particle size in the exhaust of a DI diesel engine by time-resolved laser-induced incandescence (TIRE-LII); in Emissions Technology, Measurement, and Testing, SAE SP-1420, Society of Automotive Engineers, Warrendale, 1.Google Scholar
  32. Smith, D. M. and Chughtai, A. R., 1995: The surface structure and reactivity of black carbon, Colloids and Surfaces A. 105, 47–77.CrossRefGoogle Scholar
  33. Sunderland, P. B., Köylü, Ü. Ö., and Faeth, G. M., 1995: Soot formation in weakly buoyant acetylene-fueled laminar jet diffusion flames burning in air, Combust. Flame 1 00, 310–322.CrossRefGoogle Scholar
  34. Whitefield, P. D., Trueblood, M. B., and Hagen, D. E., 1993: Size and hydration characteristics of laboratory simulated jet engine combustion aerosols, Particul. Sci. Technol. 11, 25–36.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Anne Smekens
    • 1
    • 2
  • Ricardo Henrique Moreton Godoi
    • 1
  • Patrick Berghmans
    • 2
  • René Van Grieken
    • 1
  1. 1.Department of ChemistryUniversity of AntwerpAntwerpenBelgium
  2. 2.VITOMolBelgium

Personalised recommendations