Journal of Atmospheric Chemistry

, Volume 51, Issue 2, pp 223–234 | Cite as

Gas and Particle Partitioning Behavior of Aldehyde in the Presence of Diesel Soot and Wood Smoke Aerosols

  • Sangdon Lee
  • Richard M. Kamens
  • Myoseon Jang


Outdoor smog chamber experiments were performed to investigate gas/particle (G/P) partitioning behavior of aldehyde compounds in atmospheric acidic aerosols. Diesel soot and wood smoke aerosols were selected as acidic aerosols and octanal, decanal, undecanal, and cis-pinonaldehyde for aldehydes compounds. Aerosol acidity was measured with the equivalent sulfuric acid amounts in aerosol mass: 0.2–0.6 wt% in diesel soot and 0.04–0.1 wt% in wood smoke aerosols. Experimentally determined partitioning coefficients of aldehyde along with other classes of semivolatile organic compounds (SOCs) were compared with the estimation. All experimental G/P partitioning coefficients of aldehyde compounds were 10–200 times higher than estimated partitioning coefficients. Aldehyde partitioning coefficients in wood soot were similar or less than diesel soot aerosols.

Key words

aldehydes diesel soot particle heterogeneous reaction partitioning wood smoke 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chandramouli, B., Jang, M., and Kamens, R. M., 2003: Gas-particle partitioning of semi-volatile organics on organic aerosols using a predictive activity coefficient model: Analysis of the effects of parameter choices on model performance, Atmos. Environ. 37, 853–864.CrossRefGoogle Scholar
  2. EPA, 1999: Determination of Acidic and Basic Gases and Strong Acidity of Atmospheric Fine Particles (< 2.5 mm), Method IO-4.2 in the Compendium of Methods for the Determination of Inorganic Compounds in Air, EPA/625/R-96/010a.Google Scholar
  3. Fan, Z., Kamens, R. M., Hu, J., Zhang, J., and McDow, S., 1996: Photostability of nitro-polycyclic aromatic hydrocarbons on combustion soot particles in sunlight, Environ. Sci. Technol. 30, 1358–1364.Google Scholar
  4. Fredenslund, A. and Sorensen, J. M., 1994: Group Contribution Estimation Methods. Models for Thermodynamic and Phase Equilibria Calculations, Marcel Dekker, New York.Google Scholar
  5. Gmehling, J., Rasmussen, P., and Fredenslung, A., 1982: Vapor-liquid equilibriums by UNIFAC group contribution. Revision and Extension, Ind. Eng. Chem. Process Des. Dev. 21, 118–127.CrossRefGoogle Scholar
  6. Hoffmann, T., Odum, J. R., Bowman, F., Collins, D., Klowckow, D., Flagan, R. C., and Seinfeld, J. H., 1997: Formation of organic aerosols from the oxidation of biogenic hydrocarbons, J. Atmos. Chem. 26, 189–222.CrossRefGoogle Scholar
  7. Jaoui, M. and Kamens, R. M., 2001: Mass balance of gaseous and particulate products analysis from α-pinene/NOx/air in the presence of natural sunlight, J. Geophys. Res. [Atmospheres], 106, 12541–12558.Google Scholar
  8. Jang, M., Caroll, B., Chandramouli, B., and Kamens, R. M., 2003b: Particle growth by acid-catalyzed heterogeneous reactions of organic carbonyls on pre-existing aerosols, Environ. Sci. Technol. 37, 3828–3837.CrossRefGoogle Scholar
  9. Jang, M., Czoschke, N. M., Lee, S., and Kamens, R. M., 2002: Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions, Science, 298, 814–817.CrossRefPubMedGoogle Scholar
  10. Jang, M., Czoschke, N. M., Northcross, A., and Kamens, R. M., in press: Review: Atmospheric organic aerosol production by heterogeneous acid-catalyzed reaction, Chem. Phys. Chem.Google Scholar
  11. Jang, M. and Kamens, R. M., 1998: A thermodynamic approach for modeling partitioning of semivolatile organic compounds on atmospheric particulate matter: Humidity effects, Environ. Sci. Technol. 32, 1237–1243.Google Scholar
  12. Jang, M. and Kamens, R. M., 1999: Newly characterized products and composition of secondary aerosols from the reaction of α-pinene with ozone, Atmos. Environ. 33, 459–474.CrossRefGoogle Scholar
  13. Jang, M. and Kamens, R. M., 2001a: Atmospheric secondary aerosol formation by heterogeneous reactions of aldehydes in the presence of a sulfuric acid aerosol catalyst, Environ. Sci. Technol. 35, 4758–4766.CrossRefGoogle Scholar
  14. Jang, M. and Kamens, R. M., 2001b: Characterization of secondary aerosol from the photooxidation of toluene in the presence of NOx and 1-Propene, Environ. Sci. Technol. 35, 3626–3639.CrossRefGoogle Scholar
  15. Jang, M., Kamens, R. M., Leach, K. B., and Strommen, M. R., 1997: A thermodynamic approach using group contribution methods to model the partitioning of semivolatile organic compounds on atmospheric particulate matter, Environ. Sci. Technol. 31, 2805–2811.Google Scholar
  16. Jang, M., Lee, S., and Kamens, R. M., 2003a: Organic aerosol growth by acid-catalyzed heterogeneous reactions of octanal in a flow reactor, Atmos. Environ. 37, 2125–2138.CrossRefGoogle Scholar
  17. Joback, K. G. and Reid, R. C., 1987: Estimation of pure-component properties from group contribution, Chem. Eng. Comm., 57, 233–243.Google Scholar
  18. Junge, C. E., 1977: Basic considerations about trace constituents in the atmosphere as related to the fate of global pollutants, in Suffett, I. H. (ed.), Fate of Pollutants in Air and Water Environments, Wiley, New York.Google Scholar
  19. Kamens, R., Jang, M., Chien, C., and Leach, K., 1999: Aerosol formation from the reaction of α-pinene and Ozone using a gas-phase kinetics-aerosol partitioning model, Environ. Sci. Technol. 33, 1430–1438.Google Scholar
  20. Kamens, R. M. and Jaoui, M., 2001: Modeling aerosol formation from α-pinene + NOx in the presence of natural sunlight using gas-phase kinetics and gas-particle partitioning theory, Environ. Sci. Technol. 35, 1394–1405.Google Scholar
  21. Kamens, R. M., Odum, J. R., and Fan, Z., 1995: Some observations on the times to equilibrium for semi-volatile polycyclic aromatic hydrocarbons, Environ. Sci. Technol. 29, 43–49.Google Scholar
  22. Lee, S., Jang, M., and Kamens, R. M., 2004: SOA formation from the photooxidation of α-pinene in the presence of freshly emitted diesel soot exhaust, Atmos. Environ. 38, 2597–2605.CrossRefGoogle Scholar
  23. Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R. C., and Seinfeld, J. H., 1996: Gas/particle partitioning and secondary organic aerosol yields, Environ. Sci. Technol. 30, 2580–2585.Google Scholar
  24. Pankow, J. F., 1987: Review and comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere, Atmos. Environ. 21, 2275–2283.CrossRefGoogle Scholar
  25. Pankow, J. F., 1994: An absorption model of the gas/aerosol partitioning of organic compounds in the atmosphere, Atmos. Environ. 28, 185–188.CrossRefGoogle Scholar
  26. Reddy, M. S. and Venkataraman, C., 2002a: Inventory of aerosol and sulphur dioxide emissions from India: I –Fossil fuel combustion, Atmos. Environ. 36, 677–697.CrossRefGoogle Scholar
  27. Reddy, M. S. and Venkataraman, C., 2002b: Inventory of aerosol and sulphur dioxide emissions from India. Part II –Biomass combustion, Atmos. Environ. 36, 699–712.CrossRefGoogle Scholar
  28. Stein, S. E. and Brown, R. L., 1994: Estimation of normal boiling points from group contributions, J. Chem. Inf. Comput. Sci. 34, 581–587.CrossRefGoogle Scholar
  29. Tobias, H., Beving, D. E., Ziemann, P. J., Sakurai, H., Zuk, M., McMurray, P. H., Zarling, D., Waytulo-nis, R., and Kittelson, D. B., 2001: Chemical analysis of diesel engine nanoparticles using a nano-DMA/thermal desorption particle beam mass spectrometer, Environ. Sci. Technol. 35, 2233–2243.CrossRefPubMedGoogle Scholar
  30. Tolocka, M. P., Jang, M., Ginter, J. M., Cox, F. J., Kamens, R. M., and Johnston, M. V., 2004: Formation of oligomers in secondary organic aerosol, Environ. Sci. Technol. 38, 1428–1434.CrossRefPubMedGoogle Scholar
  31. Yamasaki, H., Kuwata, K., and Miyamoto, H., 1982: Effects of temperature on aspects of airborne polycyclic aromatic hydrocarbons, Environ. Sci. Technol. 16, 189–194.CrossRefGoogle Scholar
  32. Zhao, L., Li, P., and Yalkowsky, S. H., 1999a: Predicting the entropy of boiling for organic compounds, J. Chem. Inf. Comput. Sci. 39, 1112–1116.CrossRefGoogle Scholar
  33. Zhao, L., Ni, N., and Yalkowsky, S. H., 1999b: A modification of Trouton's rule by simple molecular parameters for hydrocarbon compounds, Ind. Eng. Chem. Res. 38, 324–327.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Environmental Sciences and Engineering, CB#7431, Rosenau HallThe University of North Carolina at Chapel HillChapel HillU.S.A.

Personalised recommendations