Journal of Atmospheric Chemistry

, Volume 50, Issue 1, pp 25–47 | Cite as

Seasonal and Diurnal Ozone Variations: Observations and Modeling

  • Nicola Schneider
  • Franck Selsis
  • Joachim Urban
  • Olivier Lezeaux
  • Jérôme De La Noë
  • Philippe Ricaud


Ozone mixing ratios observed by the Bordeaux microwave radiometer between 1995 and 2002 in an altitude range 25–75 km show diurnal variations in the mesosphere and seasonal variations in terms of annual and semi-annual oscillations (SAO) in the stratosphere and in the mesosphere. The observations with 10–15 km altitude resolution are presented and compared to photochemical and transport model results.

Diurnal ozone variations are analyzed by averaging the years 1995−1997 for four representative months and six altitude levels. The photochemical models show a good agreement with the observations for altitudes higher than 50 km. Seasonal ozone variations mainly appear as an annual cycle in the middle and upper stratosphere and a semi-annual cycle in the mesosphere with amplitude and phase depending on altitude. Higher resolution (2 km) HALOE (halogen occultation experiment) ozone observations show a phase reversal of the SAO between 44 and 64 km. In HALOE data, a tendancy for an opposite water vapour cycle can be identified in the altitude range 40–60 km.

Generally, the relative variations at all altitudes are well explained by the transport model (up to 54 km) and the photochemical models. Only a newly developed photochemical model (1-D) with improved time-dependent treatment of water vapour profiles and solar flux manages to reproduce fairly well the absolute values.


diurnal ozone variations mesospheric ozone modelling seasonal ozone variations stratospheric ozone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, M., Lunine, J. I., and Yung, Y. L., 1984: The vertical distribution of ozone in the mesosphere and lower thermosphere, JGR 89, 4841.Google Scholar
  2. Appenzeller, C., Weiss, A., and Staehlin, J., 2000: NAO modulated total ozone winter trends, GRL 27, 1131–1134.Google Scholar
  3. Barnett, J. J. and Corney, M., 1985: Middle atmosphere reference model derived from satellite data, Handbook for MAP 16, 47–85.Google Scholar
  4. Bevilacqua R. M., Strobel D. F., Summers M. E., Olivero J. J., and Allen M. 1990: The seasonal variation of water vapour and ozone in the upper mesosphere, JGR 95, 883–893.Google Scholar
  5. Bjarnason, G. G., Solomon, S., Carcia, R. R., 1987: Tidal influences on vertical diffusion and diurnal variability of ozone in the mesosphere, JGR 92, 5609–5620.Google Scholar
  6. Brasseur, G. and Simon, P., 1981: Stratospheric chemical and thermal response to long-term variability in solar UV irradiance, JGR 7343–7352.Google Scholar
  7. Brasseur, G. and Solomon, S., 1984: Aeronomy of the Middle Atmosphere, D. Reidel Publishing Company.Google Scholar
  8. Brasseur, G., Hitchman, M. H., Walters, S., et al. 1990: An interactive chemical dynamical radiative 2-D model of the middle atmosphere, JGR 95, 5639–5649.Google Scholar
  9. Chabrillat, S. and Kockarts, G., 1997: Simple parameterization of the absorption of the solar Lyman-α line, GRL 24, 2659.Google Scholar
  10. Chabrillat, S. and Kockarts, G., 1998: Simple parameterization of the absorption of the solar Lyman-α line, GRL 25, 79.Google Scholar
  11. Chapman, S., 1930: A theory of upper atmospheric ozone, Mem. Royal. Meteorol. Soc. 3, 130.Google Scholar
  12. Chen, L., 1994: Middle atmosphere ozone response to solar UV variations, Ph.D. thesis, University of Colorado.Google Scholar
  13. Chipperfield, M. P., Santee, M. L., and Froidevaux, L., et al., 1996: Analysis of UARS data in the southern polar vortex using chemical transport model, JGR 101, 18861–1881.Google Scholar
  14. Clancy, R. T., Rusch, D. W., and Thomas, R. J., et al., 1987: Model ozone photochemistry on the basis of SME mesospheric observations, JGR 92, 3067–3080.Google Scholar
  15. Clancy, R. T. and Rusch, D. W., 1989: Climatology and trends of mesospheric temperatures, JGR 94, 3377–3393.Google Scholar
  16. Cordero, E. C. and Kawa, S. R., 2001: Ozone and tracer transport variations in the summer Northern Hemisphere stratosphere, JGR 106, 12227–12239.Google Scholar
  17. Connor, B. J., Siskind, D. E., Tsou, J. J., et al. 1994: Ground-based microwave observations of ozone in the upper stratosphere and mesosphere, JGR 99, 16757–16770.Google Scholar
  18. de La Noë, J., Lezeaux, O., Guillemin, G., Lauqué, R., Baron, P., Ricaud, P., 1998: A ground-based microwaveradiometer dedicated to stratospheric ozone monitoring, JGR 103, 22147– 22161.Google Scholar
  19. DeToma, G., London, J., Chen, L., et al, 1996: Solar cycle changes in UV irradiance, in Proceedings of the XVIII Quadrennial Ozone Symposium. Vol. 1, p. 259.Google Scholar
  20. Eluszkiewicz, L. and Allen, M., 1993: A global analysis of the ozone deficit in the upper stratosphere, GRL 98, 1069.Google Scholar
  21. Floyd, L. E., Reiser, P. A., and Crane, P. C. et al, 1998: Solar cycle 22 UV spectral irradiance variability: Current measurements, Sol. Phys 177, 79.Google Scholar
  22. Froidevaux, L., Allen, M., Berman, S. et al, 1985: A critical analysis of ClO and O3, GRL 90, 12999–13029.Google Scholar
  23. Garcia, R. R. and Solomon, S., 1985: The effect of breaking gravity waves, JGR 90, 3850–3852.Google Scholar
  24. Guirlet, M., Keckhut, P., Godin, S., and Mégie, G., 1997: Long-term monitoring and trends of stratsopheric ozone at OHP, Air pollution research report, European Comission 73, p. 83.Google Scholar
  25. Hassler, B., Steibrecht, W., Winkler, P. et al, 2003: Trends and interannual variations of stratospheric ozone and temperature in observations and chemistry-climate models, Proceedings of EGS 2003, CD-ROM.Google Scholar
  26. Harries, J. E., Russell, J., and Tuck, A. F., et al., 1996: Validation of measurements of water vapour from the HALogen Occultation Experiment, JGR. 101, 10205–10225.Google Scholar
  27. Huang, Y. W. H. 1994: The response of the middle atmosphere to external pertubations, Ph.D. Thesis, University of Michigan.Google Scholar
  28. Huang, Y. W. H., Reber, C. A., and Austin, J., 1997: Ozone diurnal variations observed by UARS and their model simulation, JGR 102, 12971–12985.Google Scholar
  29. Huebner, W. F., Keady, J. J., Lyon, S. P., 1992: Solar photo rates for planetary atmospheres and atmospheric pollutants, Kluwer Academic Press.Google Scholar
  30. Jaehelin, J., Harris, N. R. P., Appenzeller, C. et al, 2001: Ozone trends: A review, Rev. Geophys. 39, 231–290.Google Scholar
  31. Marsh, D., Smith, A., and Noble, E., 2003: Mesospheric ozone response to changes in water vapour, JGR 108, D3, 4109.Google Scholar
  32. McDermid, I. S., Godin, S., and Lindquist, L. O., 1990: Ground-based laser DIAL system for long term measurements of stratospheric ozone, Appl. Optics 29.Google Scholar
  33. Murtagh, D., Frisk, U., and Merino, F. et al., 2002: An overview of the ODIN mission, Can. J. Phys. 80, 4, 309–319.Google Scholar
  34. Nagahama, T., Nakane, H., Fujinuma, Y. et al, 2003: A semi-annual variation of ozone in the middle mesosphere observed with the mm-wave radiometer at Tsukuba, Japan, JGR, in revision.Google Scholar
  35. Nedoluha, G. E., Bevilacqua, R. M., Gomez, R. M., et al, 1996: Measurements of water vapor in the middle atmosphere and implications for mesospheric transport, JGR 101, D16, 21183.Google Scholar
  36. Nedoluha, G. E., Bevilacqua, R. M., Gomez, R. M. et al, 1998: Increases in middle atmospheric water vapor as observed by HALOE and the WVMS from 1991 to 1997, JGR 103, D3, 3531–3543.Google Scholar
  37. Olivero, J. J., Tsou, J. J., Croskey, C. L., et al, 1986: Solar absorption microwave measurements of upper atmospheric water, GRL 13, 197.Google Scholar
  38. Pallister, R. C. and Truck, A. F., 1983: The diurnal variation of ozone in the upper stratosphere as a test of photochemical theory, Q.J.R. Meteorol. Soc. 109, 271–284.Google Scholar
  39. Park J. H., Russell J. M. I., and Gordley L. L., et al. 1996: Validation of HALogen Occultation Experiment CH4 measurements from the UARS, JGR 101, 10183–10199.Google Scholar
  40. Perliski, L., Solomon, S., London, J., 1989: On the interpretation of seasonal variations of stratospheric ozone, Planet. Space Sci. 37, 12, 1527–1538.Google Scholar
  41. Rees, D., Barnett, J. J., and Labitzke, K. (eds.), 1990: COSPAR International Reference Atmosphere (CIRA) Part II: Middle Atmosphere Models, Pergamon Press, Oxford, England.Google Scholar
  42. Ricaud, P., Brillet, J., de la Noë, J., and Parisot, J. P., 1991: Diurnal and Seasonal Variations of Stratomesospheric Ozone, JGR 96, 18617–18629.Google Scholar
  43. Ricaud, P., Brasseur, G., Brillet, J., and de la Noë, J., et al. 1994: Theoretical validation of ground-based mm ozone observations, Ann. Geophys. 12, 664–673.Google Scholar
  44. Ricaud, P., de la Noë, J., and Connor, B., et al, 1996: Diurnal variability of mesospheric ozone as measured by UARS, JGR 101, 10077–10089.Google Scholar
  45. Rodgers, C. D. 1976: Retrieval of atmosph. temperature and composition from remote measurements of thermal radiation, Rev. Geophys. Space Sci. 14, 609–624.Google Scholar
  46. Rontó, Gy., Bérces, A., and Lammer, H., et al, 2003: Solar UV irradiation conditions on the surface of Mars, Photochem. Photobiol. 77–1, 34–40.Google Scholar
  47. Russell, J. M. I., Deaver, L. E., and Luo, M., et al., 1996: Validation of hydrogen chloride measurements made by HALOE from the UARS Platform, JGR 101, 10151–10161.Google Scholar
  48. Sander, S. P., Friedl, R. R., and DeMore, W. B., et al. 2000: Chemical kinetics and photochemical data for use in stratospheric modling – Evaluation number 13, NASA/JPL Publications.Google Scholar
  49. Schneider, N., Lezeaux, O., de La Noë, J., Urban, J., Ricaud, P., 2003: Validation of Ground-based Observations of Strato-Mesospheric Ozone, JGR 108, D17, 4540.Google Scholar
  50. Selsis, F., 2000: Evolution model of the atmosphere of terrestrial planets, Thèse Doctorat, Université Bordeaux I.Google Scholar
  51. Selsis, F., Despois, D., and Parisot, J.-P, 2002: Signature of life on exoplanets: Can Darwin produce false positive detections?, Astron. Astrophys. 388, 985–1003.Google Scholar
  52. Siskind, D. E., Nedoluha, G., Summers, M. E., Russell, J. M., 2002: A search for an anticorrelation between H2O and O3 in the lower mesosphere, JGR 107, D20, 4435.Google Scholar
  53. Thomas, R. J., Barth, C. A., Solomon, S., 1984: Seasonal variations of ozone in the upper mesosphere and gravity waves, GRL 11, 673.Google Scholar
  54. Thomas, R. J. 1990: Seasonal ozone variations in the upper mesosphere, JGR 95, 7395–7401.Google Scholar
  55. Thompson, D. W., Wallace, J. M., Hegrl, G. C., 2000: Annular mode in extratropical circulation, part II, J.Clim.. 13, 1018.Google Scholar
  56. Tsou, J. J., Olivero, J. J., Croskey, C. L., 1988: A study of the variability of H2O during spring 1984, JGR 93, 5255–5266.Google Scholar
  57. Tsou, J. J., Connor, B., J., and Parrish, A., et al, 1995: Ground-based microwave monitoring of middle atmosphere ozone, JGR 100, 3005–3016.Google Scholar
  58. Zommerfelds, W. C., Künzi, K. F., and Summers, M. E., et al, 1989: Diurnal variations of mesospheric ozone obtained by ground-based microwave radiometry, JGR 94, 12819–12832.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Nicola Schneider
    • 1
  • Franck Selsis
    • 2
  • Joachim Urban
    • 1
  • Olivier Lezeaux
    • 3
  • Jérôme De La Noë
    • 1
  • Philippe Ricaud
    • 1
  1. 1.OASUBordeauxFrance
  2. 2.INTA-CSICMadridSpain
  3. 3.NoveltisToulouseFrance

Personalised recommendations