Journal of Atmospheric Chemistry

, Volume 49, Issue 1–3, pp 303–315 | Cite as

Polyamine Production in Lichens Under Metal Pollution Stress



In the present study, thalli of the lichen species Pseudevernia furfuracea Zopf. and Evernia prunastri (L.) Ach. transplanted around an oil-fired power station. Following an exposure of 4 months, trace element concentrations (Al, Cd, Cr, Cu, Fe, Ni, Pb, V and Zn) and polyamine (PA) content [putrescine (Put), spermidine (Spd) and spermine (Spm)] of thalli were measured to study the polyamines production in lichens under metal pollution stress. The polyamine production was not significantly different for the two species but two types of statistically significant relationships were revealed between polyamines production and metals concentration in lichen thalli: a positive linear relationship for the pairs total PAs–Cd (P. furfuracea), total PAs–Cu (E. prunastri), Put–Pb (E. prunastri), Spm–Pb (E. prunastri) and a second-order polynomial relationship for the pairs Put–Cd (P. furfuracea), Spm–Cr (E. prunastri) and total PAs–V (E. prunastri). A possible involvement of polyamines in metal pollution stress response of lichens is discussed.


Evernia prunastri lichen metal pollution stress polyamine Pseudevernia furfuracea 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal, S. B., Agrawal, M., Lee, E. H., Kramer, G. F., and Pillai, P., 1992: Changes in polyamine and glutathione contents of a green alga, Chlorogonium elongatum (Dang) France exposed to mercury, Environ. Exp. Bot. 32, 145–151.Google Scholar
  2. Bargagli, R., 1998: Trace Elements in Terrestrial Plants: An Ecophysiological Approach to Biomonitoring and Biorecovery, Springer, Berlin, 324 pp.Google Scholar
  3. Bargagli, R. and Mikhailova, I., 2000: Accumulation of inorganic contaminants, in P. L. Nimis, C. Scheidegger and P. A. Wolseley (eds.), Monitoring with Lichens – Monitoring Lichens, NATO Science Series, Vol. 7, IV Earth and Environmental Sciences, Dordrecht, pp. 65–84.Google Scholar
  4. Bouchereau, A., Aziz, A., Larher, F., and Martin-Tanguy, J., 1999: Polyamines and environmental challenges: Recent development, Plant Sci. 140, 103–125.Google Scholar
  5. Diamantopoulos, J., Pirintsos, S., Laundon, J. R., and Vokou, D., 1992: The epiphytic lichens around Thessaloniki (Greece) as indicators of sulphur dioxide pollution, Lichenologist 24, 63–71.Google Scholar
  6. Flores, H. E., and Galston, A. W., 1982: Analysis of polyamines in higher plants by high performance liquid chromatography, Plant Physiol. 69, 701–706.Google Scholar
  7. Fontaniella, B., Mateos, J. L., Vicente, C., and Legaz, M. E., 2001: Improvement of the analysis of densylated derivatives of polyamines and their conjugates by high-performance liquid chromatography, J. Chromatog. 919, 283–288.Google Scholar
  8. Garty, J., 2001: Biomonitoring atmospheric heavy metals with lichens: Theory and Application, Crit. Rev. Plant Sci. 20, 309–371.Google Scholar
  9. Garty, J., Kauppi, M., and Kauppi, A., 1995: Differential Responses of certain lichen species to sulphur-containing solutions under acidic conditions as expressed by the production of stress-ethylene, Environ. Res. 69, 132–143.Google Scholar
  10. Garty, J., Kauppi, M., and Kauppi, A., 1997a: The production of stress ethylene relative to the concentration of heavy metals and other elements in the lichen Hypogymnia physodes, Environ. Toxicol. Chem. 16, 2404–2408.Google Scholar
  11. Garty, J., Kauppi, M., and Kauppi, A., 1997b: The influence of air pollution on the concentration of airborne elements and on the production of stress-ethylene in the lichen Usnea hirta (L.) Weber em. Mot. transplanted in urban sites in Oulu, N. Finland, Arch. Environ. Contam. Toxicol. 32, 285–290.Google Scholar
  12. Garty, J., Kloog, N., Wolfson, R., Cohen, Y., Karnieli, A., and Avni, A., 1997c: The influence of air pollution on the concentration of mineral elements, on the spectral reflectance response and on the production of stress-ethylene in the lichen Ramalina duriaei, New Phytologist 137, 587–597.Google Scholar
  13. Garty, J., Weissman, L., Tamir, O., Beer, S., Cohen, Y., Karnieli, A., and Orlovsky, L., 2000: Comparison of five physiological parameters to access the vitality of the lichen Ramalina lacera exposed to air pollution, Physiologia Plantarum 109, 410–418.Google Scholar
  14. Garty, J., Tomer, S., Levin, T., and Lehr, H., 2003: Lichens as biomonitors around a coal-fired power station in Israel, Environ. Res. 91, 186–198.Google Scholar
  15. Groppa, M. D., Benavides, M. P., and Tomaro, M. L., 2003: Polyamine metabolism in sunflower and wheat leaf discs under cadmium or copper stress, Plant Sci. 164, 293–299.Google Scholar
  16. Groppa, M. D., Tomaro, M. L., and Benavides, M. P., 2001: Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs, Plant Sci. 161, 481–488.Google Scholar
  17. Guevara, S. R., Arribére, M. A., Calvelo, S., and Roman Ross, G., 1995: Elemental composition of lichens at Nahuel Huapi National Park, Patagonia, Argentina, J. Radioanal. Nucl. Chem. 198, 437–448.Google Scholar
  18. Jeran, Z., Jačimovič, R., Smodiš, B., and Batič, F., 2000: Epiphytic lichens as quantitative biomonitors for atmospheric element deposition, in Proceeding of the Biomap Workshop, Biomonitoring of Atmospheric Pollution (with emphasis on trace elements), Lisbon, 21–24 September 1997, pp. 22–28.Google Scholar
  19. Kotzabasis, K., 1996: A role for chloroplast-associated polyamines? Botanica Acta. 109, 5–7.Google Scholar
  20. Kotzabasis, K., Christakis-Hampsas, M. D., and Roubelakis-Angelakis, K. A., 1993: A narrow-bore HPLC method for identification and quantitation of free, conjugated and bound polyamines, Anal. Biochem. 214, 484–489.Google Scholar
  21. Kushad, M. M., and Dumbroff, E. B., 1991: Metabolic and physiological relationships between the polyamine and ethylene biosynthetic pathways, in R. D. Slocum and H. E. Flores (eds.), The Biochemistry and Physiology of Polyamines in Plants, CRC Press, Boca Raton, FL, pp. 78–89.Google Scholar
  22. Loppi, S., and Pirintsos, S. A., 2003: Epiphytic lichens as sentinels for heavy metal pollution at forest ecosystems (central Italy), Environ. Pollut. 121, 327–332.Google Scholar
  23. Loppi, S., Pirintsos, S. A., and De Dominicis, V., 1999: Soil contribution to the elemental composition of epiphytic lichens (Tuscany, Central Italy), Environ. Monit. Assess. 58, 121–131.Google Scholar
  24. Malmberg, R. L., Watson, M. B., Galloway, G. L., and Yu, W. L., 1998: Molecular genetic analyses of plant polyamines, Crit. Rev. Plant Sci. 17, 199–224.Google Scholar
  25. Martin-Tanguy, J., 2001: Metabolism and function of polyamines in plants: Recent development (new approaches), Plant Growth Regul. 34, 135–148.Google Scholar
  26. Navakoudis, E., Lütz, C., Langebartels, C., Lütz-Meindl, U., and Kotzabasis, K., 2003: Ozone impact on the photosynthetic apparatus and the protective role of polyamines, Biochim. Biophys. Acta. 1621, 160–169.Google Scholar
  27. Nimis, P. L., 1993: The Lichens of Italy. An Annotated Catalogue, Museo Regionale di Scienze Naturali Torino, Monogr. XII, 897 pp.Google Scholar
  28. Nimis, P. L., and Bargagli, R., 1999: Linee-guida per l’utilizzo dei licheni epifiti come bioaccumulatori di metalli in traccia, in Proceedings of the Workshop, Biomonitoraggio Della Qualità dell’aria sul Territorio Nazionale, Roma 26–27 November 1998, ANPA – Serie Atti, pp. 279–287.Google Scholar
  29. Nimis, P. L., Lazzarin, G., Lazzarin, A., and Skert, N., 2000: Biomonitoring of trace elements with lichens in Veneto (NE Italy), Sci. Total Environ. 255, 97–111.Google Scholar
  30. Ott, S., and Zwoch, I., 1992: Ethylene production by lichens, Lichenologist 24, 73–80.Google Scholar
  31. Pirintsos, S. A., Diamantopoulos, J., and Stamou, G. P., 1993a: Analysis of the vertical distribution of epiphytic lichens on Pinus nigra (Mount Olympos, Greece) along an altitudinal gradient, Vegetatio 109, 63–70.Google Scholar
  32. Pirintsos, S. A., Diamantopoulos, J., and Stamou, G. P., 1996: Hierarchical analysis of the relationship between spatial distribution and abundance of epiphytic lichens (Mt. Olympos – Greece), Vegetatio 122, 95–106.Google Scholar
  33. Pirintsos, S. A., Vokou, D., Diamantopoulos, J., and Galloway, D., 1993b: An assessment of the sampling procedure for estimating air pollution using epiphytic lichens as indicators, Lichenologist 25, 165–173.Google Scholar
  34. Smith, J., Burritt, D., and Bannister, P., 2001: Ultraviolet-B radiation leads to a reduction in free polyamines in Phaseolus vulgaris L., Plant Growth Regul. 35, 289–294.Google Scholar
  35. Tassoni, A., van Buuren, M., Franceschetti, M., Fornalè, S., and Bagni, N., 2000: Polyamine content and metabolism in Arabidopsis thaliana and effect of spermidine on plant development, Plant Physiol. Biochem. 38, 383–393.Google Scholar
  36. Velikova, V., Yordanov, I., and Edreva, A., 2000: Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Protective role of exogenous polyamines, Plant Sci. 151, 59–66.Google Scholar
  37. Vokou, D., Pirintsos, S. A., and Loppi, S., 1999: Lichens as bioindicators of temporal variations in air quality around Thessaloniki, Northern Greece, Ecol. Res. 14, 89–96.Google Scholar
  38. Wolterbeek, B., 2002: Biomonitoring of trace element air pollution: Principles, possibilities and perspectives, Environ. Pollut. 120, 11–21.Google Scholar
  39. Zarb, J., and Walters, D. R., 1995: Polyamine biosynthesis in the ectomycorrhizal fungus Paxillus involutus exposed to zinc, Lett. Appl. Microbiol. 21, 93–95.Google Scholar
  40. Zarb, J., and Walters, D. R., 1996: Polyamine biosynthesis in the ectomycorrhizal fungus Paxillus involutus exposed to lead, Mycol. Res. 100, 486–488.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Department of BiologyUniversity of CreteHeraklionGreece
  2. 2.Department of Environmental Science “G. Sarfatti,”University of SienaSienaItaly

Personalised recommendations