Journal of Atmospheric Chemistry

, Volume 49, Issue 1–3, pp 161–173 | Cite as

Relative Response of Biological and Non-Biological Monitors in a Coastal Environment

  • A. Machado
  • M. C. Freitas
  • A. M. G. Pacheco


A field study was carried out in the spring and summer of 2003 (2 months each), to assess the efficiency of alternative exposure modes of biological monitors – lichen biomass and tree-bark biomass – together with prospective, non-biological monitors – cellulose acetate and Chelex-100™ resin – versus conventional transplants of the same species. After exposure to the marine atmosphere of Sines (SW Portugal), saline elements (Cl, Na, K, Mg) contents were determined in all samples by instrumental neutron activation analysis (INAA). Manganese was used as the crustal reference for data normalisation. As a whole, the results pointed to a consistent elemental accumulation regardless of the season (spring, summer), and to some fair reproducibility of data. There were good correlations between Cl and Na in terms of both raw and normalised data, for either the biomonitors or the cellulose acetate. Elemental ratios generally agreed with the average relative composition of bulk seawater. The degree of association between Cl and Na appeared rather unaffected by the normalisation procedure, which suggests that (i) both elements most likely had an almost exclusive marine origin; and (ii) accounting for crustal inputs via Mn did not bias the results. Other sources than the sea-spray might contribute to the Mg levels, though, as only Mn-normalised data showed intrinsic (correlation) and extrinsic (ratio) consistency. The performance of the Chelex-100™ resin was rather disappointing when compared to the other monitors.


airborne salinity biological monitors epiphytic lichens INAA polymeric monitors sea-salt tracers tree bark 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bargagli, R., 1989: Determination of metal deposition patterns by epiphytic lichens, Toxicol. Environ. Chem. 18, 249–256.Google Scholar
  2. Bargagli, R., 1995: The elemental composition of vegetation and the possible incidence of soil contamination of samples, Sci. Total Environ. 176, 121–128.Google Scholar
  3. Bargagli, R., Brown, D. H., and Nelli, L., 1995: Metal biomonitoring with mosses: Procedures for correcting for soil contamination, Environ. Pollut. 89, 169–175.Google Scholar
  4. Bargagli, R., Monaci, F., Borghini, F., Bravi, F., and Agnorelli, C., 2002: Mosses and lichens as biomonitors of trace metals. A comparison study on Hypnum cupressiforme and Parmelia caperata in a former mining district in Italy, Environ. Pollut. 116, 279–287.Google Scholar
  5. Blanchard, D. C., 1983: The production, distribution, and bacterial enrichment of the sea-salt aerosol, in P. S. Liss and W. G. N. Slinn (eds.), The Air-Sea Exchange of Gases and Particles, D. Reidel, Dordrecht, pp. 407–454.Google Scholar
  6. Blanchard, D. C., 1985: The oceanic production of atmospheric sea salt, J. Geophys. Res. 90 961– 963.Google Scholar
  7. Bowen, H. J. M., 1979: Environmental Chemistry of the Elements, Academic Press, London.Google Scholar
  8. Cao, L., Tian, W., Ni, B., Zhang, Y., and Wang, P., 2002: Preliminary study of airborne particulate matter in a Beijing sampling station by instrumental neutron activation analysis, Atmos. Environ. 36, 1951–1956.Google Scholar
  9. Cullis, C. F., and Hirschler, M. M., 1980: Atmospheric sulphur: Natural and man-made sources, Atmos. Environ. 14, 1263–1278.Google Scholar
  10. Figueira, R., Pacheco, A. M. G., Sousa, A. J., and Catarino, F., 2002: Development and calibration of epiphytic lichens as saltfall biomonitors – Dry-deposition modelling, Environ. Pollut. 120, 69–78.Google Scholar
  11. Figueira, R., Pacheco, A. M. G., Sousa, A. J., Branquinho, C., and Catarino, F., 1995: First studies in assessing cryptogamic epiphytes as biomonitors of sea-salt deposition density, in H. Power, N. Moussiopoulos and C. A. Brebbia (eds.), Air Pollution III – Vol. 2: Air Pollution Engineering and Management, Computational Mechanics Publications, Southampton, pp. 431–438.Google Scholar
  12. Figueira, R., Sousa, A. J., Brown, D. H., Catarino, F., and Pacheco, A. M. G., 1999: Natural levels of saline elements on lichens: Determination of cellular fractions and their importance as saline tracers, Lichenologist 31, 183–196.Google Scholar
  13. Figueira, R., Sousa, A. J., Pacheco, A. M. G., and Catarino, F., 2001: Use of secondary information in space–time statistics for biomonitoring studies of saline deposition, Environmetrics 12, 203– 217.Google Scholar
  14. Freitas, M. C., 1993: The development of k0-standardized neutron activation analysis with counting using a low energy photon detector, PhD Thesis, Institute for Nuclear Sciences – University of Gent, Gent, Belgium.Google Scholar
  15. Freitas, M. C., and Martinho, E., 1989: Accuracy and precision in instrumental neutron activation analysis of reference materials and lake sediments, Anal. Chim. Acta 223, 287–292.Google Scholar
  16. Freitas, M. C., and Nobre, A. S., 1997: Bioaccumulation of heavy metals using Parmelia sulcata and Parmelia caperata for air pollution studies, J. Radioanal. Nucl. Chem. 217, 17–20.Google Scholar
  17. Freitas, M. C., Reis, M. A., Alves, L. C., Marques, A. P., and Costa, C., 1999: Environmental assessment in an industrial area of Portugal, Biol. Trace Elem. Res. 71/72, 273–280.Google Scholar
  18. Freitas, M. C., Reis, M. A., Alves, L. C., and Wolterbeek, H. Th., 2000: Nuclear analytical techniques in atmospheric trace element studies in Portugal, in B. Markert and K. Friese (eds.), Trace Elements – Their Distribution and Effects in the Environment, Elsevier Science B.V., Amsterdam, pp. 187–213.Google Scholar
  19. Freitas, M. C., Reis, M. A., Alves, L. C., Wolterbeek, H. Th., Verburg, T., and Gouveia, M. A., 1997: Biomonitoring of trace-element air pollution in Portugal: Qualitative survey, J. Radioanal. Nucl. Chem. 217, 21–30.Google Scholar
  20. Friend, J. P., 1989: Natural chlorine and fluorine in the atmosphere, water and precipitation, in Scientific Assessment of Stratospheric Ozone (WMO Report, sponsored by NASA, UKDOE, NOAA, UNEP and WMO), World Meteorological Organization, Washington DC, USA.Google Scholar
  21. González, C. M., Pignata, M. L., and Orellana, L., 2003: Applications of redundancy analysis for the detection of chemical response patterns to air pollution in lichen, Sci. Total Environ. 312, 245–253.Google Scholar
  22. Häffner, E., Lomský, B., Hynek, V., Hällgren, J.-E., Batic, F., and Pfanz, H., 2001: Air pollution and lichen physiology. Physiological responses of different lichens in a transplant experiment following an SO2-gradient, Water Air Soil Pollut. 131, 185–201.Google Scholar
  23. Kubin, E., 1990: A survey of element concentrations in the epiphytic lichen Hypogymnia physodes in Finland in 1985–1986, in P. Kauppi, P. Anttila and K. Kenttämies (eds.), Acidification in Finland, Springer-Verlag, Berlin, pp. 421–446.Google Scholar
  24. Lantzy, R. J. and Mackenzie, F. T., 1979: Atmospheric trace metals: Global cycles and assessment of man’s impact, Geochim. Cosmochim. Acta 43, 511–525.Google Scholar
  25. Larson, D. W., Matthes-Sears, U., and Nash III, T. H., 1986: The ecology of Ramalina menziesii. II. Variation in water relations and tensile strength across an inland gradient, Can. J. Bot. 64, 6–10.Google Scholar
  26. Luck, J. M. and Ben Othman, D., 2002: Trace element and Pb isotope variability during rainy events in the NW Mediterranean: Constraints on anthropogenic and natural sources, Chem. Geol. 182, 443–460.Google Scholar
  27. Manoli, E., Voutsa, D., and Samara, C., 2002: Chemical characterization and source identification/apportionment of fine and coarse air particles in Thessaloniki, Greece, Atmos. Environ. 36, 949–961.Google Scholar
  28. Möller, D., 1984: On the global natural sulphur emission, Atmos. Environ. 18, 29–39.Google Scholar
  29. Möller, D., 1990: The Na/Cl ratio in rainwater and the seasalt chloride cycle, Tellus 42B, 254–262.Google Scholar
  30. Nriagu, J. O., 1989a: A global assessment of natural sources of atmospheric trace metals, Nature 338, 47–49.Google Scholar
  31. Nriagu, J. O., 1989b: Natural versus anthropogenic emissions of trace metals to the atmosphere, in J. M. Pacyna and B. Ottar (eds.), Control and Fate of Atmospheric Trace Metals, Kluwer Academic Publishers, Dordrecht, pp. 3–13.Google Scholar
  32. Olmez, I., Gulovali, M. C., and Gordon, G. E., 1985: Trace element concentrations in lichens near a coal-fired power plant, Atmos. Environ. 19, 1663–1669.Google Scholar
  33. Pacheco, A. M. G., Barros, L. I. C., Freitas, M. C., Reis, M. A., Hipólito, C., and Oliveira, O. R., 2002: An evaluation of olive-tree bark for the biological monitoring of airborne trace-elements at ground level, Environ. Pollut. 120, 79–86.Google Scholar
  34. Pacheco, A. M. G. and Freitas, M. C., 2004: Are lower epiphytes really that better than higher plants for indicating airborne contaminants? An insight into the elemental contents of lichen thalli and tree bark by INAA, J. Radioanal. Nucl. Chem. 259, 27–33.Google Scholar
  35. Pacheco, A. M. G., Freitas, M. C., Barros, L. I. C., and Figueira, R., 2001: Investigating tree bark as an air-pollution biomonitor by means of neutron activation analysis, J. Radioanal. Nucl. Chem. 249, 327–331.Google Scholar
  36. Patterson, C. C. and Settle, D. M., 1987: Review of data on eolian fluxes of industrial and natural lead to lands and seas in remote regions on a global scale, Mar. Chem. 22, 137–162.Google Scholar
  37. Petrenchuk, O. P., 1980: On the budget of sea salts and sulfur in the atmosphere, J. Geophys. Res. 85, 7439–7444.Google Scholar
  38. Planchon, F. A. M., van de Velde, K., Rosman, K. J. R., Wolff, E. W., Ferrari, C. P., and Boutron, C. F., 2003: One hundred fifty-year record of lead isotopes in Antarctic snow from Coats Land, Geochim. Cosmochim. Acta 67, 693–708.Google Scholar
  39. Puckett, K. J. and Finegan, E. J., 1980: An analysis of the element content of lichens from the Northwest Territories, Canada, Can. J. Bot. 58, 2073–2089.Google Scholar
  40. Raes, F., Van Dingenen, R., Vignati, E., Wilson, J., Putaud, J.-P., Seinfeld, J. H., and Adams, P., 2000: Formation and cycling of aerosols in the global troposphere, Atmos. Environ. 34, 4215–4240.Google Scholar
  41. Rahn, K. A. and Huang, S., 1999: A graphical technique for distinguishing soil and atmospheric deposition in biomonitors from plant material, Sci. Total Environ. 232, 79–104.Google Scholar
  42. Stone, S. F., Freitas, M. C., Parr, R. M., and Zeisler, R., 1995: Elemental characterization of a candidate lichen research material – IAEA 336, J. Anal. Chem. 352, 227–231.Google Scholar
  43. Sutherland, R. A., 2003: Lead in grain size fractions of road-deposited sediment, Environ. Pollut. 121, 229–237.Google Scholar
  44. Takala, K., Olkkonen, H., Jääskeläinen, J., and Selkäinaho, K., 1990: Total chlorine content of epiphytic and terricolous lichens and birch bark in Finland, Ann. Bot. Fenn. 27, 131–137.Google Scholar
  45. Várhelyi, G. and Gravenhorst, G., 1983: Production rate of airborne sea-salt sulfur deduced from chemical analysis of marine aerosols and precipitation, J. Geophys. Res. 88, 6737–6751.Google Scholar
  46. Weiss, D., Shotyk, W., Rieley, J., Page, S., Gloor, M., Reese, S., and Martinez-Cortizas, A., 2002: The geochemistry of major and selected trace elements in a forested peat bog, Kalimantan, SE Asia, and its implications for past atmospheric dust deposition, Geochim. Cosmochim. Acta 66, 2307–2323.Google Scholar
  47. Zhang, X. Y., Cao, J. J., Li, L. M., Arimoto, R., Cheng, Y., Huebert, B., and Wang, D., 2002: Characterization of atmospheric aerosol over XiAn in the south margin of the Loess Plateau, China, Atmos. Environ. 36, 4189–4199.Google Scholar
  48. Zoller, W. H., Gladney, E. S., and Duce, R. A., 1974: Atmospheric concentrations and sources of trace metals at the South Pole, Science 183, 199–201.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • A. Machado
    • 1
  • M. C. Freitas
    • 1
  • A. M. G. Pacheco
    • 2
  1. 1.Reactor-ITN (Technological and Nuclear Institute)SacavémPortugal
  2. 2.CVRM-IST (Technical University of Lisbon)LisboaPortugal

Personalised recommendations