Skip to main content
Log in

Enhanced vertical turbulent nitrate flux in the Kuroshio across the Izu Ridge

  • Short Contribution
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

The first direct measurements of vertical turbulent nitrate flux, FluxNO3, were conducted in the Kuroshio across the Izu Ridge and revealed large FluxNO3 near the sill crest at the 1% light depth. This large FluxNO3 possibly enhances downstream phytoplankton growth. Extremely large FluxNO3 was also observed at 26.0–26.6 σθ between the core of the Kuroshio nutrient stream and the North Pacific Intermediate Water. We hypothesize that strong vertical mixing in the Izu Ridge draws sufficient nitrate upward from the North Pacific Intermediate Water to the nutrient stream, which eventually impacts the downstream biogeochemistry in the western North Pacific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Carter GS, Gregg MC, Lien R-C (2005) Internal waves, solitary-like waves, and mixing on the Monterey Bay shelf. Cont Shelf Res 25:1499–1520

    Article  Google Scholar 

  • Chang M-H, Tang TY, Ho C-R, Chao S-Y (2013) Kuroshio-induced wake in the lee of Green Island off Taiwan. J Geophys Res Oceans 118:1508–1519. https://doi.org/10.1002/jgrc.20151

    Article  Google Scholar 

  • Chang M-H, Jheng S-Y, Lien R-C (2016) Trains of large Kelvin–Helmholtz billows observed in the Kuroshio above a seamount. Geophys Res Lett 43:8654–8661. https://doi.org/10.1002/2016GL069462

    Article  Google Scholar 

  • Conkright WE, Levitus S, Boyer T (1994) World Ocean Atlas 1994, vol. 1: nutrients. NOAA Atlas NESDIS 1. US Gov. Printing Office, Washington, p 150

    Google Scholar 

  • Cyr F, Bourgault D, Galbraith PS, Gosselin M (2015) Turbulent nitrate fluxes in the Lower St. Lawrence Estuary. Can J Geophys Res Oceans 120:2308–2330. https://doi.org/10.1002/2014JC010272

    Article  Google Scholar 

  • D’Asaro E, Lee C, Rainville L, Harcourt R, Thomas L (2011) Enhanced turbulence and energy dissipation at ocean fronts. Science 332:318–322. https://doi.org/10.1126/science.1201515

    Article  Google Scholar 

  • Gill AE (1982) Atmosphere–ocean dynamics. Academic, San Diego, p 662

    Google Scholar 

  • Guo X, Zhu X-H, Wu Q-S, Huang D (2012) The Kuroshio nutrient stream and its temporal variation in the East China Sea. J Geophys Res 117:C01026. https://doi.org/10.1029/2011JC007292

    Article  Google Scholar 

  • Guo XY, Zhu X-H, Long Y, Huang DJ (2013) Spatial variations in the Kuroshio nutrient transport from the East China Sea to south of Japan. Biogeosci 10:6403–6417. https://doi.org/10.5194/bg-10-6403-2013

    Article  Google Scholar 

  • Hasegawa D, Yamazaki H, Lueck RG, Seuront L (2004) How islands stir and fertilize the upper ocean. Geophys Res Lett 31:L16303. https://doi.org/10.1029/2004GL020143

    Article  Google Scholar 

  • Hasegawa D, Yamazaki H, Ishimaru T, Nagashima H, Koike Y (2008) Apparent phytoplankton bloom due to island mass effect. J Mar Syst 69(3–4):238–246. https://doi.org/10.1016/j.jmarsys.2006.04.019

    Article  Google Scholar 

  • Itoh S, Yasuda I, Nakatsuka T, Nishioka J, Volkov YN (2010) Fine- and microstructure observations in the Urup Strait, Kuril Islands, during August of 2006. J Geophys Res 115:C08004. https://doi.org/10.1029/2009JC005629

    Article  Google Scholar 

  • Joyce TM (1989) On in situ “calibration” of shipboard ADCPs. J Atmos Ocean Technol 6:169–172

    Article  Google Scholar 

  • Kaneko H, Yasuda I, Komatsu K, Itoh S (2012) Observations of the structure of turbulent mixing across the Kuroshio. Geophys Res Lett 39:L15602. https://doi.org/10.1029/2012gl052419

    Article  Google Scholar 

  • Kaneko H, Yasuda I, Komatsu K, Itoh S (2013) Observations of vertical turbulent nitrate flux across the Kuroshio. Geophys Res Lett 40:3123–3127. https://doi.org/10.1002/grl.50613

    Article  Google Scholar 

  • Kitade Y, Matsuyama M (2002) Semidiurnal internal tide observed over Ohmuro-Dashi, the northern part of the Izu Ridge. Deep Sea Res Part I 49:1309–1320

    Article  Google Scholar 

  • Kunze E, Williams AJ III, Briscoe MG (1990) Observations of shear and vertical stability from a neutrally buoyant float. J Geophys Res 95(C10):18127–18142

    Article  Google Scholar 

  • Liu X, Furuya K, Shiozaki T, Masuda T, Kodama T, Sato M, Kaneko H, Nagasawa M, Yasuda I (2013) Variability in nitrogen sources for new production in the vicinity of the shelf edge of the East China Sea in summer. Cont Shelf Res 61–62:23–30

    Article  Google Scholar 

  • Masujima M, Yasuda I (2009) Distribution and modification of North Pacific Intermediate Water around the Subarctic frontal zone east of 150E. J Phys Oceanogr 39:1462–1474

    Article  Google Scholar 

  • Masunaga E, Uchiyama Y, Suzue Y, Yamazaki H (2018) Dynamics of internal tides over a shallow ridge investigated with a high-resolution downscaling regional ocean model. Geophys Res Lett 45:3550–3558. https://doi.org/10.1002/2017GL076916

    Article  Google Scholar 

  • Nagai T, Tandon A, Yamazaki H, Doubell MJ (2009) Evidence of enhanced turbulent dissipation in the frontogenetic Kuroshio Front thermocline. Geophys Res Lett 36:L12609. https://doi.org/10.1029/2009GL038832

    Article  Google Scholar 

  • Nagai T, Tandon A, Yamazaki H, Doubell MJ, Gallager S (2012) Direct observations of microscale turbulence and thermohaline structure in the Kuroshio Front. J Geophys Res 117:C08013. https://doi.org/10.1029/2011JC007228

    Article  Google Scholar 

  • Nagai T, Hasegawa D, Tanaka T, Nakamura H, Tsutsumi E, Inoue R, Yamashiro T (2017) First evidence of coherent bands of strong turbulent layers associated with high-wavenumber internal-wave shear in the upstream Kuroshio. Sci Rep. 7:14555. https://doi.org/10.1038/s41598-017-15167-1

    Article  Google Scholar 

  • Nikurashin M, Ferrari R (2010) Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: theory. J Phys Ocean 40:1055–1074

    Article  Google Scholar 

  • Nishikawa H, Yasuda I, Komatsu K, Sasaki H, Sasai Y, Setou T, Shimizu M (2013) Winter mixed layer depth and spring bloom along the Kuroshio front: implications for feeding environment and recruitment of Japanese sardine. Mar Ecol Prog Ser 487:217–229. https://doi.org/10.3354/meps10201

    Article  Google Scholar 

  • Nishikawa H, Usui N, Kamachi M, Tanaka Y, Ishikawa Y (2016) Link between the interannual variability in the Kuroshio-Oyashio layered structure and the chlorophyll-a concentrations in the Kuroshio Extension during spring. Oceanogr Japan 25(5):133–144 (in Japanese with English abstract and figure captions)

    Article  Google Scholar 

  • Niwa Y, Hibiya T (2001) Numerical study of the spatial distribution of the M2 internal tide in the Pacific Ocean. J Geophys Res 106(C10):22441–22449

    Article  Google Scholar 

  • Osborn TR (1980) Estimates of the local rate of vertical diffusion from dissipation measurements. J Phys Oceanogr 10:83–89

    Article  Google Scholar 

  • Palmer MR, Rippeth TP, Simpson JH (2008) An investigation of internal mixing in a seasonally stratified shelf sea. J Geophys Res 113:C12005. https://doi.org/10.1029/2007JC004531

    Article  Google Scholar 

  • Pasquet S, Bouruet-Aubertot P, Reverdin G, Turnherr A, Laurent L (2016) Finescale parameterizations of energy dissipation in a region of strong internal tides and sheared flow, the Lucky-Strike segment of the Mid-Atlantic Ridge. Deep Sea Res Part I 112:79–93

    Article  Google Scholar 

  • Pelegrí JL, Csanady GT (1991) Nutrient transport and mixing in the Gulf Stream. J Geophys Res 96:2577–2583. https://doi.org/10.1029/90JC02535

    Article  Google Scholar 

  • Polzin KL (1996) Statistics of the Richardson number: mixing models and finestructure. J Phys Oceanogr 26:1409–1425

    Article  Google Scholar 

  • Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of sea-water. In: Hill MN (ed) The sea, vol 2. The composition of sea-water: comparative and descriptive oceanography. Wiley, New York, pp 26–77

    Google Scholar 

  • Reid JL (1965) Intermediate waters of the pacific ocean. The Johns Hopkins Oceanographic Studies Series, no. 2. The Johns Hopkins Press, Baltimore, p 85

    Google Scholar 

  • Sarmiento JL, Gruber N, Brzezinski MA, Dunne JP (2004) High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427:56–60. https://doi.org/10.1038/nature02127

    Article  Google Scholar 

  • Talley LD (1993) Distribution and formation of North Pacific Intermediate Water. J Phys Oceanogr 23:517–537

    Article  Google Scholar 

  • Talley LD, Nagata Y, Fujimura M, Kono T, Inagake D, Hirai M, Okuda K (1995) North Pacific intermediate water in the Kuroshio/Oyashio mixed water region. J Phys Oceanogr 25:475–501

    Article  Google Scholar 

  • Talley LD, Pickard GL, Emery WJ, Swift JH (2011) Descriptive physical oceanography: an introduction, 6th edn. Elsevier, Boston, p 560

    Google Scholar 

  • Tanaka T, Yasuda I, Onishi H, Ueno H, Masujima M (2015) Observations of current and mixing around the shelf break in Pribilof Canyon in the Bering Sea. J Oceanogr 71:1–17. https://doi.org/10.1007/s10872-014-0256-2

    Article  Google Scholar 

  • Tsuchiya M (1968) Upper waters of the intertropical Pacific Ocean. The Johns Hopkins Oceanographic Studies, no. 4. The Johns Hopkins University Press, Baltimore, p 50

    Google Scholar 

  • Tsutsumi E, Matsuno T, Lien R-C, Nakamura H, Senjyu T, Guo X (2017) Turbulent mixing within the Kuroshio in the Tokara Strait. J Geophys Res 122:7082–7094. https://doi.org/10.1002/2017JC013049

    Article  Google Scholar 

  • UNESCO (1981) The practical salinity scale 1978 and the International Equation of State of Seawater 1980. UNESCO Tech Papers Mar Sci 36:25

    Google Scholar 

  • Yasuda I (1997) The origin of the North Pacific Intermediate Water. J Geophys Res 102(C1):893–909

    Article  Google Scholar 

  • Yasuda I, Okuda K, Shimizu Y (1996) Distribution and modification of the North Pacific Intermediate Water in the Kuroshio-Oyashio Interfrontal zone. J Phys Oceanogr 26:448–465

    Article  Google Scholar 

  • Yokouchi K, Tsuda A, Kuwata A, Kasai H, Ichikawa T, Hirota Y, Adachi K, Asanuma I, Ishida H (2006) Simulated in situ measurements of primary production in Japanese waters. In: Kawahata H, Awaya YA (eds) Global climate change and response of carbon cycle in the equatorial Pacific and Indian oceans and adjacent landmasses. Elsevier Sci, Amsterdam, pp 65–88

    Google Scholar 

Download references

Acknowledgements

We thank the officers, crews, onboard scientists, technical staffs, and graduate students of the R/V Shinsei-maru KS-16-10 cruise. We also thank A. Murayama for her support in the nutrient analysis. Finally, we thank two anonymous reviewers for their valuable comments on the manuscript. This study was supported by Grants-in-Aid for Scientific Research on Innovative Areas (MEXT KAKENHI JP15H05818 and JP15H05820).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Tanaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, T., Hasegawa, D., Yasuda, I. et al. Enhanced vertical turbulent nitrate flux in the Kuroshio across the Izu Ridge. J Oceanogr 75, 195–203 (2019). https://doi.org/10.1007/s10872-018-0500-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-018-0500-2

Keywords

Navigation