Skip to main content

Advertisement

Log in

Dependence of wind stress across an air–sea interface on wave states

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

A Comment to this article was published on 13 November 2019

Abstract

Based on a combination of laboratory and field data, the influence of wind waves on wind stress with respect to sea-surface roughness z0 and drag coefficient CD was comprehensively analyzed. Wave steepness is an internal parameter denoting wave stability and is directly related to z0. Wave age is an external parameter representing the ability of wind to input energy into waves. In low and moderate winds, wave steepness increases monotonically with decreasing wave age, which is equivalent to the growth relationships of wind waves. In high winds, wave steepness reaches a maximum due to intense wave breaking and remains as a constant, whereas wave age continues to decrease with increasing wind speed. The dimensionless roughness z0/Hs as a function of wave steepness is more suitable than wave age, because wave height is related to wave age through the growth relationships of wind waves. In low and moderate winds, wave steepness can be replaced by wave age; CD increases with the wind speed, with a weak dependence on wave state. In high winds, intense wave breaking results in the collapse of the relationship between wave steepness and wave age, and CD decreases significantly with decreasing wave age and levels off with wind speed. Further, the reduction of CD in high winds is a matter of fact if both their data are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Anctil F, Donelan MA (1996) Air–water momentum flux observations over shoaling waves. J Phys Oceanogr 26:1344–1353

    Google Scholar 

  • Andreas EL (2004) Spray stress revisited. J Phys Oceanogr 34:1429–1440

    Google Scholar 

  • Andreas EL, Emanuel KA (2001) Effect of sea spray on tropical cyclone intensity. J Atmos Sci 58:3741–3751

    Google Scholar 

  • Babanin AV, Makin VK (2008) Effects of wind trend and gustiness on the sea drag: Lake George study. J Geophys Res 113:C02015. https://doi.org/10.1029/2007JC004233

    Article  Google Scholar 

  • Babanin AV, Soloviev YP (1998) Field investigation of transformation of the wind wave frequency spectrum with fetch and the stage of development. J Phys Oceanogr 28:563–576

    Google Scholar 

  • Bell MM, Montgomery MT, Emanuel KA (2012) Air–sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J Atmos Sci 69:3197–3222

    Google Scholar 

  • Callaghan AH, Leeuw G, Cohen L, O’Dowd CD (2008) Relationship of oceanic whitecap coverage to wind speed and wind history. Geophys Res Lett 35:L23609. https://doi.org/10.1029/2009GL036165

    Article  Google Scholar 

  • Charnock H (1955) Wind stress on a water surface. Q J R Meteorol Soc 81:639–640

    Google Scholar 

  • Dobson FW, Smith SD, Anderson RJ (1994) Measuring the relationship between wind stress and sea state in the open ocean in the presence of swell. Atmos Ocean 32(1):237–256

    Google Scholar 

  • Donelan MA (1982) The dependence of the aerodynamic drag coefficient on wave parameters. In: First International conference on meteorology and air–sea interaction of the coastal zone. American Meteorological Society, The Hague, pp 381–387

  • Donelan MA (1990) Air–sea interaction. In: LeMehaute B, Hanes DM (eds) The sea, vol 9. Ocean engineering science. Wiley-Interscience, Hoboken, pp 239–292

    Google Scholar 

  • Donelan MA (2018) On the decrease of the oceanic drag coefficient in high winds. J Geophys Res Oceans. https://doi.org/10.1002/2017JC013394

    Article  Google Scholar 

  • Donelan MA, Pierson WJ (1987) Radar scattering and equilibrium ranges in wind generated waves with applications to scatterometry. J Geophys Res 92:4971–5029

    Google Scholar 

  • Donelan MA, Hamilton J, Hui WH (1985) Directional spectra of wind-generated waves. Philos Trans R Soc Lond Ser A 315:509–562

    Google Scholar 

  • Donelan MA, Skafel MG, Graber H, Liu P, Schwab D, Venkatesh S (1992) On the growth rate of wind-generated waves. Atmos Ocean 30(3):457–478

    Google Scholar 

  • Donelan MA, Dobson FW, Smith SD, Anderson RJ (1993) On the dependence of sea surface roughness on wave development. J Phys Oceanogr 23:2143–2149

    Google Scholar 

  • Donelan MA, Drennan WM, Katsaros KB (1997) The air–sea momentum flux in conditions of wind sea and swell. J Phys Oceanogr 27:2087–2099

    Google Scholar 

  • Donelan MA, Haus BK, Reul N, Plant WJ, Stiassnie M, Graber HC, Brown OB, Saltzman ES (2004) On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys Res Lett 31:L18306. https://doi.org/10.1029/2004GL019460

    Article  Google Scholar 

  • Drennan WM, Shay LK (2006) On the variability of the fluxes of momentum and sensible heat. Bound Layer Meteorol 119:81–107. https://doi.org/10.1007/s10546-005-9010-z

    Article  Google Scholar 

  • Drennan WM, Donelan MA, Terray EA, Katsaros KB (1996) Oceanic turbulence dissipation measurements in SWADE. J Phys Oceanogr 26:808–815

    Google Scholar 

  • Drennan WM, Graber HC, Donelan MA (1999) Evidence for the effects of swell and unsteady winds on marine wind stress. J Phys Oceanogr 29:1853–1864

    Google Scholar 

  • Drennan WM, Graber HC, Hauser D, Quentin C (2003) On the wave age dependence of wind stress over pure wind seas. J Geophys Res 108(C3):8062. https://doi.org/10.1029/2000JC000715

    Article  Google Scholar 

  • Drennan WM, Taylor PK, Yelland MJ (2005) Parameterizing the sea surface roughness. J Phys Oceanogr 35:835–848

    Google Scholar 

  • Edson JB, Venkata V, Weller RA, Bigorre SP, Plueddemann AJ, Fairall CW, Miller SD, Mahrt L, Vickers D, Hersbach H (2013) On the exchange of momentum over the open ocean. J Phys Oceanogr 43(8):1589–1610

    Google Scholar 

  • French JR, Drennan WM, Zhang JA, Black PG (2007) Turbulent fluxes in the Hurricane boundary layer. Part I: momentum flux. J Atmos Sci 64:1089–1102

    Google Scholar 

  • García-Nava H, Ocampo-Torres FJ, Osuna P, Donelan MA (2009) Wind stress in the presence of swell under moderate to strong wind conditions. J Geophys Res 114:C12008. https://doi.org/10.1029/2009JC005389

    Article  Google Scholar 

  • García-Nava H, Ocampo-Torres FJ, Hwang PA (2012) On the parameterization of the drag coefficient in mixed seas. Sci Mar 76(S1):177–186

    Google Scholar 

  • Garratt JR (1977) Review of drag coefficients over oceans and continents. Mon Weather Rev 105:915–929

    Google Scholar 

  • Geernaert GL, Plant WJ (1990) Surface waves and fluxes. Kluwer Acad, Norwell

    Google Scholar 

  • Geernaert GL, Larsen SE, Hansen F (1987) Measurements of the wind stress, heat flux, and turbulence intensity during storm conditions over the North Sea. J Geophys Res 92(C12):13127–13139

    Google Scholar 

  • Glazman RE, Greysukh A (1993) Satellite altimeter measurements of surface wind. J Geophys Res 98:2475–2483

    Google Scholar 

  • Goda Y, Nagai K (1974) Investigation of the statistical properties of sea waves with fields and simulated data. PHRI Rep. 013–01–01, Wave Lab., Mar. Hydrodyn. Div., Port and Harbour Res. Inst., Minist. of Transp., Yokosuka, Japan

  • Golbraikh E, Shtemler YM (2016) Foam input into the drag coefficient in hurricane conditions. Dyn Atmos Oceans 73:1–9

    Google Scholar 

  • Guan C, Xie L (2004) On the linear parameterization of drag coefficient over sea surface. J Phys Oceanogr 34:2847–2851

    Google Scholar 

  • Hanson JL, Phillips OM (1999) Wind sea growth and dissipation in the open ocean. J Phys Oceanogr 29:1633–1648

    Google Scholar 

  • Hara T, Belcher SE (2004) Wind profile and drag coefficient over mature ocean surface wave spectra. J Phys Oceanogr 34:2345–2358

    Google Scholar 

  • Holthuijsen LH, Powell MD, Pietrzak JD (2012) Wind and waves in extreme hurricanes. J Geophys Res 117:C09003. https://doi.org/10.1029/2012JC007983

    Article  Google Scholar 

  • Hsu SA (1974) A dynamic roughness equation and its application to wind stress determination at the air–sea interface. J Phys Oceanogr 4:116–120

    Google Scholar 

  • Hsu SA (2014) Estimating hurricane-induced drift velocity: a case study during Ivan. Glob J Res Eng E Civ Struct Eng 14(6):1–10

    Google Scholar 

  • Huang NE, Long SR, Bliven LF (1981) On the importance of significant slope in empirical wind–wave studies. J Phys Oceanogr 10:569–573

    Google Scholar 

  • Hwang PA (2004) Influence of wavelength on the parameterization of drag coefficient and surface roughness. J Oceanogr 60:835–841

    Google Scholar 

  • Hwang PA (2005a) Comparison of the ocean surface wind stress computed with different parameterization functions of the drag coefficient. J Oceanogr 61:91–107

    Google Scholar 

  • Hwang PA (2005b) Drag coefficient, dynamic roughness and reference wind speed. J Oceanogr 61:399–413

    Google Scholar 

  • Hwang PA (2005c) Temporal and spatial variation of the drag coefficient of a developing sea under steady wind forcing. J Geophys Res 110:C07024. https://doi.org/10.1029/2005JC002912

    Article  Google Scholar 

  • Hwang PA (2016) Fetch- and duration-limited nature of surface wave growth inside tropical cyclones: with applications to air–sea exchange and remote sensing. J Phys Oceanogr 46(1):41–56

    Google Scholar 

  • Hwang PA, García-Nava H, Ocampo-Torres FJ (2011) Observations of wind wave development in mixed seas and unsteady wind forcing. J Phys Oceanogr 41:2343–2362. https://doi.org/10.1175/JPO-D-11-044.1

    Article  Google Scholar 

  • Janssen JAM (1997) Does wind stress depend on sea–state or not? A statistical error analysis of HEXMAX data. Bound Layer Meteorol 83:479–503

    Google Scholar 

  • Jarosz ED, Mitchell A, Wang DW, Teague WJ (2007) Bottom-up determination of air–sea momentum exchange under a major tropical cyclone. Science 315:1707–1709

    Google Scholar 

  • Johnson HK, Hoistrup J, Vested HJ, Larsen SE (1998) On the dependence of sea surface roughness on wind waves. J Phys Oceanogr 28:1702–1716

    Google Scholar 

  • Jones ISF, Toba Y (eds) (2001) Wind stress over the Ocean. Cambridge University Press, Cambridge

    Google Scholar 

  • Kitaigorodskii SA (1973) The physics of air–sea interactions. Keter Press, Jerusalem, pp 9–73

    Google Scholar 

  • Kleiss JM, Melville WK (2010) Observations of wave breaking kinematics in fetch-limited seas. J Phys Oceanogr 40:2575–2604. https://doi.org/10.1175/2010JPO4383.1

    Article  Google Scholar 

  • Komori S, Iwano K, Takgaki N, Onishi R, Kurose R, Takahashi K, Suzuki N (2018) Laboratory measurements of heat transfer and drag coefficients at extremely high wind speeds. J Phys Oceanogr 48:959–974

    Google Scholar 

  • Kondo J (1975) Air–sea bulk transfer coefficients in diabatic conditions. Bound Layer Meteorol 9:91–112. https://doi.org/10.1007/bf00232256

    Article  Google Scholar 

  • Kudryavtsev VN (2006) On the effect of sea drops on the atmospheric boundary layer. J Geophys Res 111:C07020. https://doi.org/10.1029/2005JC002970

    Article  Google Scholar 

  • Kudryavtsev VN, Makin VK (2007) Aerodynamic roughness of the sea surface at high winds. Bound Layer Meteorol 125:289–303. https://doi.org/10.1007/s10546-007-9184-7

    Article  Google Scholar 

  • Kudryavtsev VN, Makin VK (2011) Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Bound Layer Meteorol 140(3):383–410

    Google Scholar 

  • Kukulla T, Hara T, Belcher SE (2007) A model of the air-sea momentum flux and breaking-wave distribution for strongly forced wind waves. J Phys Oceanogr 37:1811–1828

    Google Scholar 

  • Large WG, Pond S (1981) Open ocean momentum flux measurements in moderate to strong winds. J Phys Oceanogr 11:324–336

    Google Scholar 

  • Maat N, Kraan C, Oost WA (1991) The roughness of wind waves. Bound Layer Meteorol 54:89–103

    Google Scholar 

  • Makin VK (2005) A note on the drag of the sea surface at hurricane winds. Bound Layer Meteorol 115:169–176

    Google Scholar 

  • Masuda A, Kusaba T (1987) On the local equilibrium of winds and wind–waves in relation to surface drag. J Oceanogr Soc Jpn 43:28–36

    Google Scholar 

  • Mitsuyasu H, Tasai F, Suhara T, Misuno S, Ohkuso M, Honda T, Rikiishi K (1980) Observations of the power spectrum of ocean waves using a cloverleaf buoy. J Phys Oceanogr 10:286–296

    Google Scholar 

  • Monahan EC, Muircheartaigh IGÓ (1980) Optimal power-law description of oceanic whitecap coverage dependence on wind speed. J Phys Oceanogr 10(12):2094–2099

    Google Scholar 

  • Monbaliu J (1994) On the use of the Donelan wave spectral parameter as a measure for the roughness of wind waves. Bound Layer Meteorol 67(3):277–291

    Google Scholar 

  • Moon I-J, Hara T, Ginis I, Belcher SE, Tolman H (2004a) Effect of surface waves on air–sea momentum exchange. Part I: effect of mature and growing seas. J Atmos Sci 61:2321–2333

    Google Scholar 

  • Moon I-J, Ginis I, Hara T (2004b) Effect of surface waves on air–sea momentum exchange. Part II: behavior of drag coefficient under tropical cyclones. J Atmos Sci 61:2334–2348

    Google Scholar 

  • Moon I-J, Ginis I, Hara T (2004c) Effect of surface waves on Charnock coefficient under tropical cyclones. Geophys Res Lett 31:L20302. https://doi.org/10.1029/2004GL020988

    Article  Google Scholar 

  • Potter H, Graber HC, Williams NJ, Collins CO III, Ramos RJ, Drennan WM (2015) In situ measurements of momentum fluxes in typhoons. J Atmos Sci 72(1):104–118

    Google Scholar 

  • Powell MD, Vickery PJ, Reinhold TA (2003) Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422:279–283

    Google Scholar 

  • Rastigejev Y, Suslov SA (2014) Eε model of spray-laden near-sea atmospheric layer in high wind conditions. J Phys Oceanogr 44:742–763

    Google Scholar 

  • Rastigejev Y, Suslov SA, Lin YL (2011) Effect of ocean spray on vertical momentum transport under high-wind conditions. Bound Layer Meteorol 141:1–20

    Google Scholar 

  • Romero L, Melville WK (2010) Airborne observations of fetch-limited waves in the Gulf of Tehuantepec. J Phys Oceanogr 40:441–465

    Google Scholar 

  • Smith SD (1980) Wind stress and heat flux over the ocean in gale force winds. J Phys Oceanogr 10:709–726

    Google Scholar 

  • Smith SD (1988) Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J Geophys Res 93:15467–15472

    Google Scholar 

  • Smith SD, Banke EG (1975) Variation of the sea surface drag coefficient with wind speed. Q J R Meteorol Soc 101:655–673

    Google Scholar 

  • Smith SD et al (1992) Sea surface wind stress and drag coefficients: the HEXOS results. Bound Layer Meteorol 60:109–142

    Google Scholar 

  • Soloviev AV, Lukas R, Donelan MA, Haus BK, Ginis I (2014) The air–sea interface and surface stress under tropical cyclones. Sci Rep 4:5306. https://doi.org/10.1038/srep05306

    Article  Google Scholar 

  • Stewart RH (1974) The air–sea momentum exchange. Bound Layer Meteorol 6:151–167

    Google Scholar 

  • Sugimori Y, Akiyama M, Suzuki N (2000) Ocean measurement and climate prediction–expectation for signal processing. J Signal Process 4:209–222

    Google Scholar 

  • Takagaki N, Komori S, Suzuki N, Iwano K, Kuramoto T, Shimada S, Kurose R, Takahashi K (2012) Strong correlation between the drag coefficient and the shape of the wind sea spectrum over a broad range of wind speeds. Geophys Res Lett 39:L23604. https://doi.org/10.1029/2012GL053988

    Article  Google Scholar 

  • Takagaki N, Komori S, Suzuki N (2016a) Estimation of friction velocity from the wind–wave spectrum at extremely high wind speeds. IOP Conf Ser Earth Environ Sci 35:012009. https://doi.org/10.1088/1755-1315/35/1/012009

    Article  Google Scholar 

  • Takagaki N, Komori S, Suzuki N, Iwano K, Kurose R (2016b) Mechanism of drag coefficient saturation at strong wind speeds. Geophys Res Lett 43:9829–9835. https://doi.org/10.1002/2016GL070666

    Article  Google Scholar 

  • Taylor PK, Yelland MA (2001) The dependence of sea surface roughness on the height and steepness of the waves. J Phys Oceanogr 31:572–590

    Google Scholar 

  • Terray EA, Donelan MA, Agrawal YC, Drennan WM, Kahma KK, Williams AJ III, Hwang PA, Kitaigorodskii SA (1996) Estimates of kinetic energy dissipation under breaking waves. J Phys Oceanogr 26:792–807

    Google Scholar 

  • Toba Y (1972) Local balance in the air–sea boundary processes. I. On the growth processes of wind waves. J Oceanogr Soc Jpn 28:109–120

    Google Scholar 

  • Toba Y, Koga M (1986) A parameter describing overall conditions of wave breaking, whitecapping, sea-spray production and wind stress. In: Monahan EC, Niocaill GM, Reidel D (eds) Oceanic whitecaps. D. Redel Publishing Company, Galway, Ireland, pp 37–47

    Google Scholar 

  • Toba Y, Iida N, Ebuchi N, Jones ISF (1990) Wave dependence of sea–surface wind stress. J Phys Oceanogr 20:476–492

    Google Scholar 

  • Toba Y, Smith SD, Ebuchi N (2001) Historical drag expressions. In: Jones ISF, Toba Y (eds) Wind stress over the ocean. Cambridge University Press, Cambridge, pp 35–53

    Google Scholar 

  • Toffoli A, Loffredo L, Le Roy P, Lefèvre J-M, Babanin AV (2012) On the variability of sea drag in finite water depth. J Geophys Res 117:C00J25. https://doi.org/10.1029/2011jc007857

    Article  Google Scholar 

  • Troitskaya Y, Sergeev DA, Kandaurov AA, Baidakov GA, Vdovin MA, Kazakov VI (2012) Laboratory and theoretical modeling of air–sea momentum transfer under severe wind conditions. J Geophys Res 117:C00J21. https://doi.org/10.1029/2011jc007778

    Article  Google Scholar 

  • Troitskaya Y, Ezhova E, Soustova I, Zilitinkevich S (2016) On the effect of sea spray on the aerodynamic surface drag under severe winds. Ocean Dyn 66:659–669

    Google Scholar 

  • Troitskaya Y, Kandaurov A, Ermakova O, Kozlov D, Sergeev D, Zilitinkevich S (2017) Bag-breakup fragmentation as the dominant mechanism of sea-spray production in high winds. Sci Rep 7:1614. https://doi.org/10.1038/s41598-017-01673-9

    Article  Google Scholar 

  • Vickers D, Mahrt L (1997) Fetch limited drag coefficients. Bound Layer Meteorol 85:53–79

    Google Scholar 

  • Wen S, Yu Z (1985) Ocean-wave theory and computational principle (in Chinese). Science Press, Beijing, p 662

    Google Scholar 

  • Wen S, Zhang D, Guo P, Chen B (1989) Parameters in wind–wave frequency spectra and their bearing on spectrum forms and growth. Acta Oceanol Sin 8:15–39

    Google Scholar 

  • Wu J (1980) Wind-stress coefficients over sea surface near neutral conditions—a revisit. J Phys Oceanogr 10:727–740

    Google Scholar 

  • Wu J (1988) Variations of whitecap coverage with wind stress and water temperature. J Phys Oceanogr 18:1448–1453

    Google Scholar 

  • Yelland MJ, Taylor PK (1996) Wind stress measurements from the open ocean. J Phys Oceanogr 26:541–558

    Google Scholar 

  • Young IR (2006) Directional spectra of hurricane wind waves. J Geophys Res 111:C08020. https://doi.org/10.1029/2006JC003540

    Article  Google Scholar 

  • Zhao D, Toba Y (2001) Dependence of whitecap coverage on wind and wind–wave properties. J Oceanogr 57:603–616

    Google Scholar 

  • Zhao D, Masuda A, Wen S, Guan C (1999) A laboratory study of directional spectra with maximum likelihood method, I. Developing wind wave. Acta Oceanol Sin 18(1):58–73

    Google Scholar 

  • Zhao Z-K, Liu C-X, Li Q, Dai G-F, Song Q-T, Lv W-H (2015) Typhoon air–sea drag coefficient in coastal regions. J Geophys Res Oceans. https://doi.org/10.1002/2014JC010283

    Article  Google Scholar 

Download references

Acknowledgements

The efforts of the researchers who obtained and published the data used in this study, as well as their funding organizations, are much appreciated. All the observational data used are from the cited references. This work was financially supported by the National Natural Science Foundation of China (NSFC) (41876010,41276015), the Public Science and Technology Research Funds Projects of Ocean (201505007), the Joint Project for the National Oceanographic Center by the NSFC and Shandong Government (U1406402), and the Doctoral Fund of Ministry of Education of China (20120132110004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongliang Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Li, M. Dependence of wind stress across an air–sea interface on wave states. J Oceanogr 75, 207–223 (2019). https://doi.org/10.1007/s10872-018-0494-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-018-0494-9

Keywords

Navigation