Advertisement

Journal of Oceanography

, Volume 74, Issue 5, pp 439–452 | Cite as

Ventilation time and anthropogenic CO2 in the Bering Sea and the Arctic Ocean based on carbon tetrachloride measurements

  • Hengxiang Deng
  • Hongwei Ke
  • Peng Huang
  • Xiaodan Chen
  • Minggang Cai
Original Article

Abstract

The Arctic Ocean is connected to the Pacific by the Bering Sea and the Bering Strait. During the 4th Chinese National Arctic Research Expedition, measurements of carbon tetrachloride (CCl4) were used to estimate ventilation time-scales and anthropogenic CO2 (Cant) concentrations in the Arctic Ocean and Bering Sea based on the transit time distribution method. The profile distribution showed that there was a high-CCl4 tongue entering through the Canada Basin in the intermediate layer (27.6 < σθ < 28), at latitudes between 78 and 85°N, which may be related to the inflow of Atlantic water. Between stations B09 and B10, upwelling appeared to occur near the continental slope in the Bering Sea. The ventilation time scales (mean ages) for deep and bottom water in the Arctic Ocean (~ 230–380 years) were shorter than in the Bering Sea (~ 430–970 years). Higher mean ages show that ventilation processes are weaker in the intermediate water of the Bering Sea than in the Arctic Ocean. The mean Cant column inventory in the upper 4000 m was higher (60–82 mol m−2) in the Arctic Ocean compared to the Bering Sea (35–48 mol m−2).

Keywords

CCl4 Mean age Cant Ventilation Bering Sea Arctic Ocean 

Notes

Acknowledgements

We are grateful for the assistance of the crew of the R/V Snow Dragon in sample collection during the 4th Chinese Arctic Research Expedition to the Arctic, and for support from the Chinese Arctic and Antarctic Administration, and the State Oceanic Administration of China. We gratefully thank Dr. Toste Tanhua for providing useful information on the TTD calculation Matlab toolbox, and Miming Zhang in building and testing the instrument. Professor John Hodgkiss is thanked for his assistance with English.

Supplementary material

10872_2018_471_MOESM1_ESM.tif (458 kb)
Fig. A1 Fig. 4 gridding misfits (TIFF 457 kb)
10872_2018_471_MOESM2_ESM.tif (454 kb)
Fig. A2 Fig. 5 gridding misfits (TIFF 453 kb)
10872_2018_471_MOESM3_ESM.tif (472 kb)
Fig. A3 Fig. 7a gridding misfits (TIFF 472 kb)
10872_2018_471_MOESM4_ESM.tif (471 kb)
Fig. A4 Fig. 7b gridding misfits (TIFF 471 kb)
10872_2018_471_MOESM5_ESM.tif (451 kb)
Fig. A5 Fig. 9 gridding misfits (TIFF 451 kb)
10872_2018_471_MOESM6_ESM.docx (30 kb)
Supplementary material 6 (DOCX 30 kb)

References

  1. Aagaard K, Roach AT, Schumacher JD (1985) On the wind-driven variability of the flow through Bering Strait. J Geophys Res Oceans 90(C4):7213–7221.  https://doi.org/10.1029/JC090iC04p07213 CrossRefGoogle Scholar
  2. Azetsu-Scott K, Jones EP, Gershey RM (2005) Distribution and ventilation of water masses in the Labrador Sea inferred from CFCs and carbon tetrachloride. Mar Chem 94:55–66.  https://doi.org/10.1016/j.marchem.2004.07.015 CrossRefGoogle Scholar
  3. Beining P, Roether W (1996) Temporal evolution of CFC 11 and CFC 12 concentrations in the ocean interior. J Geophys Res: Oceans 101(C7):16455–16464.  https://doi.org/10.1029/96JC00987 CrossRefGoogle Scholar
  4. Brewer PG, Bradshaw AL, Williams RT (1986) Measurements of total carbon dioxide and alkalinity in the North Atlantic Ocean in 1981. Springer, New York, pp 348–370Google Scholar
  5. Bullister JL, Wisegarver DP (1998) The solubility of carbon tetrachloride in water and seawater. Deep-Sea Res Partt I Oceanogr Res Papers 45(8):1285–1302.  https://doi.org/10.1016/S0967-0637(98)00017-X CrossRefGoogle Scholar
  6. Carmack EC, MacDonald RW, Perkin RG, McLaughlin FA, Pearson RJ (1995) Evidence for warming of Atlantic water in the Southern Canadian Basin of the Arctic Ocean: results from the Larsen-93 Expedition. Geophys Res Lett 22(9):1061–1064.  https://doi.org/10.1029/95GL00808 CrossRefGoogle Scholar
  7. Carmack EC, Aagaard K, Swift JH, MacDonald RW, McLaughlin FA et al (1997) Changes in temperature and tracer distributions within the Arctic Ocean: results from the 1994 Arctic Ocean section. Deep-Sea Res Part II Top Stud Oceanogr 44:1487–1502.  https://doi.org/10.1016/S0967-0645(97)00056-8 CrossRefGoogle Scholar
  8. Chen CTA (1993) Carbonate chemistry of the wintertime Bering Sea marginal ice zone. Cont Shelf Res 13:67–87.  https://doi.org/10.1016/0278-4343(93)90036-W CrossRefGoogle Scholar
  9. Chen GTA, Millero FJ (1979) Gradual increase of oceanic CO2. Nature 277(5693):205–206CrossRefGoogle Scholar
  10. Doney S, Bullister J (1992) A chlorofluorocarbon section in the eastern North Atlantic. Deep-Sea Res Part I Oceanogr Res Papers 39(11):1857–1883.  https://doi.org/10.1016/0198-0149(92)90003-C CrossRefGoogle Scholar
  11. Fine RA (2011) Observations of CFCs and SF6 as ocean tracers. Annu Rev Mar Sci 3:173–195.  https://doi.org/10.1146/annurev.marine.010908.163933 CrossRefGoogle Scholar
  12. Fine RA, Peacock S, Maltrud ME, Bryan FO (2017) A new look at ocean ventilation time scales and their uncertainties. J Geophys Res Oceans 122(5):3771–3798.  https://doi.org/10.1002/2016JC012529 CrossRefGoogle Scholar
  13. Gebbie G, Huybers P (2012) The Mean Age of Ocean Waters Inferred from Radiocarbon Observations: Sensitivity to Surface Sources and Accounting for Mixing Histories. J Phys Oceanogr 42(3):515–525.  https://doi.org/10.1175/JPO-D-11-043.1 Google Scholar
  14. Hall TM, Haine TWN, Waugh DW (2002) Inferring the concentration of anthropogenic carbon in the ocean from tracers. Glob Biogeochem Cycles 16(4):1131.  https://doi.org/10.1029/2001GB001835 CrossRefGoogle Scholar
  15. Huhn O, Roether W, Beining P, Rose H (2001) Validity limits of carbon tetrachloride as an ocean tracer. Deep-Sea Res Part I Oceanogr Res Papers 48:2025–2049.  https://doi.org/10.1016/S0967-0637(01)00004-8 CrossRefGoogle Scholar
  16. Jakobsson M (2002) Hypsometry and volume of the Arctic Ocean and its constituent seas. Geochem Geophys Geosyt 3(5):1–18.  https://doi.org/10.1029/2001GC000302 CrossRefGoogle Scholar
  17. Johannessen OM, Carmack EC (1994) The Arctic Ocean and climate: a perspective. The polar oceans and their role in shaping the global environment. American Geophysical Union, Washington, pp 5–20Google Scholar
  18. Jones EP, Anderson LG (1986) On the origin of the chemical properties of the Arctic Ocean halocline. J Geophys Res Oceans 91(C9):10759–10767.  https://doi.org/10.1029/JC091iC09p10759 CrossRefGoogle Scholar
  19. Jones E, Rudels B, Anderson L (1995) Deep waters of the Arctic Ocean: origins and circulation. Deep-Sea Res Part I Oceanogr Res Papers 42:737–760.  https://doi.org/10.1016/0967-0637(95)00013-V CrossRefGoogle Scholar
  20. Karcher MJ, Oberhuber JM (2002) Pathways and modification of the upper and intermediate waters of the Arctic Ocean. J Geophys Res Oceans 107(C6):2-1–2-13.  https://doi.org/10.1029/2000jc000530 CrossRefGoogle Scholar
  21. Karstensen J, Schlosser P, Wallace DW, Bullister J, Blindheim J (2005) Water mass transformation in the Greenland Sea during the 1990s. J Geophys Res Oceans 110:C07S20.  https://doi.org/10.1029/2004JC002510 CrossRefGoogle Scholar
  22. Key RM, Olsen A, van Heuven S, Lauvset SK, Velo A, Lin X, Schirnick C, Kozyr A, Tanhua T, Hoppema M, Jutterström S, Steinfeldt R, Jeansson E, Ishi M, Perez FF, Suzuki T (2015) Global Ocean Data Analysis Project, Version 2 (GLODAPv2), ORNL/CDIAC-162, NDP-P093. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge.  https://doi.org/10.3334/cdiac/otg.ndp093_glodapv2
  23. Kinder TH, Coachman LK, Galt JA (1975) The bering slope current system. J Phys Oceanogr 5(2):231–244.  https://doi.org/10.1175/1520-0485(1975)005<0231:TBSCS>2.0.CO;2
  24. Krysell M (1992) Carbon tetrachloride and methyl chloroform as tracers of deep water formation in the Weddell Sea, Antarctica. Mar Chem 39(4):297–310.  https://doi.org/10.1016/0304-4203(92)90015-3 CrossRefGoogle Scholar
  25. Krysell M, Wallace D (1988) Arctic Ocean ventilation studied with a suite of anthropogenic halocarbon tracers. Science 242(4879):746.  https://doi.org/10.1126/science.242.4879.746 CrossRefGoogle Scholar
  26. Krysell M, Fogelqvist E, Tanhua T (1994) Apparent removal of the transient tracer carbon-tetrachloride from anoxic seawater. Geophys Res Lett 21:2511–2514.  https://doi.org/10.1029/94GL02336 CrossRefGoogle Scholar
  27. Matsumoto K (2007) Radiocarbon-based circulation age of the world oceans. J Geophys Res Oceans 112:C09004.  https://doi.org/10.1029/2007JC004095 Google Scholar
  28. McLaughlin FA, Carmack EC, MacDonald RW, Melling H, Swift JH et al (2004) The joint roles of Pacific and Atlantic-origin waters in the Canada Basin, 1997–1998. Deep-Sea Res Part I Oceanogr Res Papers 51(1):107–128.  https://doi.org/10.1016/j.dsr.2003.09.010 CrossRefGoogle Scholar
  29. Meredith MP, VanScoy KA, Watson AJ, Locarnini RA (1996) On the use of carbon tetrachloride as a transient tracer of Weddell Sea deep and bottom waters. Geophys Res Lett 23:2943–2946.  https://doi.org/10.1029/96GL02770 CrossRefGoogle Scholar
  30. Meredith MP, Watson AJ, Van Scoy KA, Haine TWN (2001) Chlorofluorocarbon-derived formation rates of the deep and bottom waters of the Weddell Sea. J Geophys Res 106:2899.  https://doi.org/10.1029/2000JC900119 CrossRefGoogle Scholar
  31. Min DH, Warner MJ, Bullister JL (2010) Estimated rates of carbon tetrachloride removal in the thermocline and deep waters of the East Sea (Sea of Japan). Mar Chem 121:100–111.  https://doi.org/10.1016/j.marchem.2010.03.008 CrossRefGoogle Scholar
  32. Cai MG, Huang P, Zhang MM, Li WQ (2013) A purge and trap gas chromatographic method for detection of chlorofluorocarbons in seawater. Chin J Anal Chem 41:268–272.  https://doi.org/10.1016/S1872-2040(13)60632-5 CrossRefGoogle Scholar
  33. Olsen A, Key RM, van Heuven S, Lauvset SK, Velo A, Lin X, Schirnick C, Kozyr A, Tanhua T, Hoppema M, Jutterström S, Steinfeldt R, Jeansson E, Ishii M, Pérez FF, Suzuki T (2016) The Global Ocean Data Analysis Project version 2 (GLODAPv2)—an internally consistent data product for the world ocean. Earth Syst Sci Data 8:297–323.  https://doi.org/10.5194/essd-8-297-2016 CrossRefGoogle Scholar
  34. Roy RN, Roy LN, Vogel KM, Porter-Moore C, Pearson T, Good CE, Millero FJ, Campbell DM (1993) The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperatures 0 to 45°C. Mar Chem 44(2–4):249–267.  https://doi.org/10.1016/0304-4203(93)90207-5 CrossRefGoogle Scholar
  35. Rudels B, Jones E, Anderson L, Kattner G (1994) On the intermediate depth waters of the Arctic Ocean. In: Johannessen OM, Muench RD, Overland JE (eds) The polar oceans and their role in shaping the global environment. American Geophysical Union, Washington DC, pp 33–46.  https://doi.org/10.1029/GM085p0033 Google Scholar
  36. Rudels B, Anderson LG, Jones EP (1996) Formation and evolution of the surface mixed layer and halocline of the Arctic Ocean. J Geophys Res Oceans 101(C4):8807–8821.  https://doi.org/10.1029/96JC00143 CrossRefGoogle Scholar
  37. Rudels B, Fahrbach E, Meincke J, Budeus G, Eriksson P (2002) The East Greenland Current and its contribution to the Denmark Strait overflow. ICES J Mar Sci 59(6):1133–1154.  https://doi.org/10.1016/j.pocean.2007.08.031 CrossRefGoogle Scholar
  38. Sabine CL, Tanhua T (2010) Estimation of anthropogenic CO2 inventories in the ocean. Annu Rev Mar Sci 2:175–198.  https://doi.org/10.1146/annurev-marine-120308-080947 CrossRefGoogle Scholar
  39. Sapozhnikov VV (1993) Influence of mesoscale anticyclonic eddies on the formation of hydrochemical structures in the Bering Sea. Oceanology 33:299–304Google Scholar
  40. Sarmiento JL, Orr JC, Siegenthaler U (1992) A perturbation simulation of CO2 uptake in an ocean general circulation model. J Geophys Res Oceans 97:3621–3645.  https://doi.org/10.1029/91JC02849 CrossRefGoogle Scholar
  41. Schlosser P, Kromer B, Östlund G, Ekwurzel B, Bönisch G et al (1994) On the 14C and 39Ar distribution in the central Arctic Ocean: implications for deep water formation. Radiocarbon 36:327–343.  https://doi.org/10.1017/S003382220001451X CrossRefGoogle Scholar
  42. Schlosser P, Kromer B, Ekwurzel B, Bönisch G, McNichol A et al (1997) The first trans-Arctic 14C section: comparison of the mean ages of the deep waters in the Eurasian and Canadian basins of the Arctic Ocean. Nucl Instrum Methods Phys Res Sect B 123:431–437.  https://doi.org/10.1016/S0168-583X(96)00677-5 CrossRefGoogle Scholar
  43. Schneider A, Tanhua T, Kortzinger A, Wallace DWR (2010) High anthropogenic carbon content in the eastern Mediterranean. J Geophys Res Oceans 115:C12050.  https://doi.org/10.1029/2010jc006171 CrossRefGoogle Scholar
  44. Schneider A, Tanhua T, Kortzinger A, Wallace DWR (2012) An evaluation of tracer fields and anthropogenic carbon in the equatorial and the tropical North Atlantic. Deep-Sea Res Part I Oceanogr Res Papers 67:85–97.  https://doi.org/10.1016/j.dsr.2012.05.007 CrossRefGoogle Scholar
  45. Schumacher JD, Reed RK (1992) Characteristics of currents over the continental slope of the eastern Bering Sea. J Geophys Res Oceans 97(C6):9423–9433.  https://doi.org/10.1029/92JC00512 CrossRefGoogle Scholar
  46. Shao AE, Mecking S, Thompson L, Sonnerup RE (2013) Mixed layer saturations of CFC 11, CFC 12, and SF6 in a global isopycnal model. J Geophys Res Oceans 118:4978–4988.  https://doi.org/10.1002/jgrc.20370 CrossRefGoogle Scholar
  47. Smethie WM, Schlosser P, Bonisch G, Hopkins TS (2000) Renewal and circulation of intermediate waters in the Canadian Basin observed on the SCICEX 96 cruise. J Geophys Res Oceans 105(C1):1105–1121.  https://doi.org/10.1029/1999JC900233 CrossRefGoogle Scholar
  48. Smith JN, McLaughlin FA, Smethie WM, Moran SB, Lepore K (2011) Iodine-129, 137Cs, and CFC 11 tracer transit time distributions in the Arctic Ocean. J Geophys Res 116:C04024.  https://doi.org/10.1029/2010JC006471 Google Scholar
  49. Stabeno PJ, Schumache JD, Ohtani K (1999) The physical oceanography of the Bering Sea. Dynamics of the Bering Sea, pp 1–28Google Scholar
  50. Stöven T, Tanhua T (2014) Ventilation of the Mediterranean Sea constrained by multiple transient tracer measurements. Ocean Sci 10(3):439–457.  https://doi.org/10.5194/osd-10-1647-2013 CrossRefGoogle Scholar
  51. Stöven T, Tanhua T, Hoppema M, Von Appen WJ (2015) Recent transient tracer distributions in the Fram Strait: estimation of anthropogenic carbon content and transport. Ocean Sci Discuss 12(5):2189–2229.  https://doi.org/10.5194/osd-12-2189-2015 CrossRefGoogle Scholar
  52. Tanhua T, Olsson KA, Jeansson E (2005) Formation of Denmark Strait overflow water and its hydro-chemical composition. J Mar Syst 57:264–288.  https://doi.org/10.1016/j.jmarsys.2005.05.003 CrossRefGoogle Scholar
  53. Tanhua T, Waugh DW, Wallace DW (2008) Use of SF6 to estimate anthropogenic CO2 in the upper ocean. J Geophys Res Oceans 113:C04037.  https://doi.org/10.1029/2007JC004416 CrossRefGoogle Scholar
  54. Tanhua T, Jones EP, Jeansson E, Jutterström S, Smethie WM et al (2009) Ventilation of the Arctic Ocean: mean ages and inventories of anthropogenic CO2 and CFC 11. J Geophys Res 114:C01002.  https://doi.org/10.1029/2008JC004868 CrossRefGoogle Scholar
  55. Völker C, Wallace DWR, Wolf-Gladrow DA (2002) On the role of heat fluxes in the uptake of anthropogenic carbon in the North Atlantic. Glob Biogeochem Cycles 16(4):1131.  https://doi.org/10.1029/2002gb001897 CrossRefGoogle Scholar
  56. Wallace DW (2001) Storage and transport of excess CO2 in the oceans: the JGOFS/WOCE global CO2 survey. Int Geophys 77:489–521.  https://doi.org/10.1016/S0074-6142(01)80136-4 CrossRefGoogle Scholar
  57. Wallace D, Beining P, Putzka A (1994) Carbon tetrachloride and chlorofluorocarbons in the South Atlantic Ocean, 19 S. J Geophys Res Oceans 99(C4):7803–7819.  https://doi.org/10.1029/94JC00031 CrossRefGoogle Scholar
  58. Wanninkhof R, Doney S, Peng TH, Bullister J, Lee K et al (1999) Comparison of methods to determine the anthropogenic CO2 invasion into the Atlantic Ocean. Tellus B 51:511–530.  https://doi.org/10.1034/j.1600-0889.1999.00027.x CrossRefGoogle Scholar
  59. Warner MJ, Weiss RF (1985) Solubilities of chlorofluorocarbons 11 and 12 in water and seawater. Deep-Sea Res Part I Oceanogr Res Papers 32:1485–1497.  https://doi.org/10.1016/0198-0149(85)90099-8 CrossRefGoogle Scholar
  60. Warner MJ, Roden GI (1995) Chlorofluorocarbon evidence for recent ventilation of the deep Bering Sea. Nature 373(6513):409–412.  https://doi.org/10.1038/373409a0 CrossRefGoogle Scholar
  61. Waugh DW, Hall TM, Haine TWN (2003) Relationships among tracer ages. J Geophys Res Oceans 108(C5):3138.  https://doi.org/10.1029/2002JC001325 CrossRefGoogle Scholar
  62. Waugh DW, Haine TWN, Hall TM (2004) Transport times and anthropogenic carbon in the subpolar North Atlantic Ocean. Deep-Sea Res Part I Oceanogr Res Papers 51:1475–1491.  https://doi.org/10.1016/j.dsr.2004.06.011 CrossRefGoogle Scholar
  63. Zhao JP, Shi JX, Gao GP, Rao YT, Wang HX (2006) Water mass of the northward throughflow in the Bering Strait in the summer of 2003. Acta Oceanol Sin 25:25–32Google Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Ocean and Earth SciencesXiamen UniversityXiamenChina
  2. 2.Fujian Provincial Key Laboratory for Coastal Ecology and Environmental StudiesXiamen UniversityXiamenChina
  3. 3.State Key Laboratory of Marine Environmental ScienceXiamen UniversityXiamenChina

Personalised recommendations