Advertisement

Journal of Oceanography

, Volume 74, Issue 3, pp 305–317 | Cite as

Spatial distribution of dissolved methane and its source in the western Arctic Ocean

  • Kushi Kudo
  • Keita Yamada
  • Sakae Toyoda
  • Naohiro Yoshida
  • Daisuke Sasano
  • Naohiro Kosugi
  • Masao Ishii
  • Hisayuki Yoshikawa
  • Akihiko Murata
  • Hiroshi Uchida
  • Shigeto Nishino
Original Article
  • 269 Downloads

Abstract

Recent Arctic warming and decreasing sea-ice can promote the release of methane (CH4), a greenhouse gas, from the Arctic Ocean, thereby providing a strong climate feedback. However, the dynamics of dissolved CH4 in the Arctic Ocean remain uncertain, especially in western areas. This report describes the horizontal and vertical distributions of concentration and stable carbon isotope ratio (δ13C value) of CH4 in the western Arctic Ocean. Surface layer samples used for this study were supersaturated with CH4 in comparison to the atmosphere. Especially high CH4 concentrations (up to 10.3 nmol kg−1) were observed at stations in the continental shelf area. At the bottom layer of the shelf stations, the CH4 concentration was higher (up to 55.9 nmol kg−1). Its δ13C value was lower (down to − 63.8‰) than in the surface layer, which suggests that CH4 in the shelf water is produced mainly by methanogens in sediment. At deeper stations in the Canada Basin (seafloor > 300 m depth), the maxima of CH4 concentration were detected at depths of 10–50 m and 100–200 m, although δ13C values were lowest at 50 m depth. The shallower CH4 maximum coincided with the DO maximum, suggesting CH4 production by plankton activity or sinking particles. The deeper CH4 maximum corresponded to the nutrient maximum, suggesting horizontal advection of shelf water from the coastal shelf area. From the results, we were able to confirm that the dynamics of dissolved CH4 in the western Arctic Ocean in summer 2012 varied with area and depth.

Keywords

Western Arctic Ocean Dissolved CH4 concentration Stable carbon isotope ratio Depth profile Chukchi Sea Canada Basin Bering Strait Organic matter degradation from sediment Methanogen Plankton activity 

Notes

Acknowledgements

We acknowledge the scientists and crews of the MR12-E03 cruise on R/V Mirai, JAMSTEC, for sampling and providing the hydrographic and nutrient data. This study was conducted under the Green Network of Excellence (GRENE) Arctic Climate Change Research Project. It was also supported financially by JSPS KAKENHI 23224013 and by the Global COE program “From Earth to Earths” of the Ministry of Education, Culture, Sports, Science and Technology, Japan. Figures 1, 2, and 5 were drawn using “Ocean Data View” (http://odv.awi.de/) software. The data used to prepare Figs. 3, 4 and 5 are available from the Data Research System for Whole Cruise Information in JAMSTEC (Darwin; http://www.godac.jamstec.go.jp/darwin/cruise/mirai/mr12-e03/e).

Supplementary material

10872_2017_460_MOESM1_ESM.doc (492 kb)
Supplementary material 1 (DOC 491 kb)

References

  1. Aagaard K, Weingartner TJ, Danielson SL, Woogate RA, Johnson GC, Whitledge TE (2006) Some controls on flow and salinity in Bering Strait. Geophys Res Lett 33:L19602.  https://doi.org/10.1029/2006GL026612 CrossRefGoogle Scholar
  2. Alperin MJ, Reeburgh WS, Whiticar MJ (1988) Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation. Glob Biochem Cycles 2:279–288CrossRefGoogle Scholar
  3. Arrigo KR, van Dijken G (2011) Secular trends in Arctic Ocean net primary production. J Geophys Res 116:C09011.  https://doi.org/10.1029/2011JC007151 Google Scholar
  4. Coleman DD, Risatti JB, Schoell M (1981) Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria. Geochim Cosmochim Acta 45:1033–1037CrossRefGoogle Scholar
  5. Damm E, Mackensen A, Budeus G, Faber E, Hanland C (2005) Pathways of methane in seawater: plume spreading in an Arctic shelf environment (SW-Spitsbergen). Cont Shelf Res 25:1453–1472Google Scholar
  6. Damm E, Kiene RP, Schwarz J, Flack E, Dieckmann G (2008) Methane cycling in Arctic shelf water and its relationship with phytoplankton biomass and DMSP. Mar Chem 109:45–59Google Scholar
  7. Damm E, Helmke E, Thoms S, Schauer U, Nothig E, Bakker K, Kiene RP (2010) Methane production in aerobic oligotrophic surface water in the central Arctic Ocean. Biogeoscience 7:1099–1108CrossRefGoogle Scholar
  8. Damm E, Rudels B, Schauer U, Dieckmann G (2015) Methane excess in Arctic surface water-triggered by sea ice formation and melting. Sci Rep 5:16179Google Scholar
  9. Dlugokencky EJ, Bruhwiler L, White JWC, Emmons LK, Novelli PC, Montzka SA, Masarie KA, Lang PM, Crotwell AM, Miller JB, Gatti LV (2009) Observational constraints on recent increases in the atmospheric CH4 burden. Geophys Res Lett 36:L18803.  https://doi.org/10.1029/2009GL039780 CrossRefGoogle Scholar
  10. Dlugokencky EJ, Nisbet EG, Fisher RE, Lowry D (2011) Global atmospheric methane: budget, changes and dangers. Philos Trans R Soc A 369:2058–2072CrossRefGoogle Scholar
  11. Fenwick L, Capelle D, Damm E, Zimmermann S, Williams WJ, Vagle S, Tortell PD (2017) Methane and nitrous oxide distributions across the North American Arctic Ocean during summer, 2015. J Geophys Res Oceans 122:390–412.  https://doi.org/10.1002/2016JC012493 CrossRefGoogle Scholar
  12. Gong D, Pickart RS (2015) Summertime circulation in the eastern Chukchi Sea. Deep Sea Res Part 2(118):18–31CrossRefGoogle Scholar
  13. Grant NJ, Whiticar MJ (2002) Stable carbon isotopic evidence for methane oxidation in plumes above Hydrate Ridge, Cascadia Oregon Margin. Glob Biogeochem Cycles 16:4.  https://doi.org/10.1029/2001GB001851 Google Scholar
  14. Gruber N, Sarmiento JL (1997) Global patterns of marine nitrogen fixation and denitrification. Glob Biogeochem Cycles 11(2):235–266CrossRefGoogle Scholar
  15. Harada N (2016) Review: potential catastrophic reduction of sea ice in the western Arctic Ocean: Its impact on biogeochemical cycles and marine ecosystems. Glob Planet Change 136:1–17CrossRefGoogle Scholar
  16. Hioki N, Kuma K, Morita Y, Sasayama R, Ooki A, Kondo Y, Obata H, Nishioka J, Yamashita S, Kikuchi T, Aoyama M (2014) Laterally spreading iron, humic-like dissolved organic matter and nutrients in cold, dense subsurface water of the Arctic Ocean. Sci Rep 4:6775.  https://doi.org/10.1038/srep06775 CrossRefGoogle Scholar
  17. Holmes ME, Sansone FJ, Rust TM, Popp BN (2000) Methane production, consumption, and air–sea exchange in the open ocean: an evaluation based on carbon isotopic ratios. Glob Biogeochem Cycles 14(1):1–10CrossRefGoogle Scholar
  18. Hopcroft R, Bluhm B, Gradinger R (2008) Arctic Ocean synthesis: analysis of climate change impacts in the Chukchi and Beaufort Seas with strategies for future research. University of Alaska Fairbanks, Institute of Mar. Sci., 184 pp., North Pacific Research Board, Anchorage, AlaskaGoogle Scholar
  19. Intergovernmental Panel on Climate Change AR4 (2007)Google Scholar
  20. Intergovernmental Panel on Climate Change AR5 (2013)Google Scholar
  21. Karl DM, Tilblook BD (1994) Production and transport of methane in oceanic particulate organic matter. Nature 368:732–734CrossRefGoogle Scholar
  22. Kastner M, Kvenvolden KA, Lorenson TD (1998) Chemistry, isotopic composition, and origin of a methane–hydrogen sulfide hydrate at the Cascadia subduction zone. Earth Planet Sci Lett 156:173–183CrossRefGoogle Scholar
  23. Kikuchi T (2012) R/V Mirai Cruise Report MR12-E03. In: Kikuchi T, Nishino S (eds) JAMSTEC, Yokosuka, Japan, p 190Google Scholar
  24. Kvenvolden KA (1993) Gas hydrates—geological perspective and global change. Rev Geophys 31(2):173–187CrossRefGoogle Scholar
  25. Kvenvolden KA, Lilley MD, Lorenson TD, Barnes PW, McLaughlin E (1993) The Beaufort Sea continental shelf as a seasonal source of atmospheric methane. Geophys Res Lett 20(22):2459–2462CrossRefGoogle Scholar
  26. Lapham L, Marshall K, Magen C, Lyubchich V, Cooper LW, Grebmeier JM (2017) Dissolved methane concentration in the water column and surface sediments of Hanna Shoal and Barrow Canyon, northern Chukchi Sea. Deep Sea Res II 144:92–103.  https://doi.org/10.1016/j.dsr2.2017.01.004 CrossRefGoogle Scholar
  27. Macdonald RW (1976) Distribution of low-molecular weight hydrocarbons in southern Beaufort Sea. Environ Sci Technol 10:1241–1246CrossRefGoogle Scholar
  28. Martens CS, Albert DB, Alperin MJ (1999) Stable isotope tracing of anaerobic methane oxidation in the gassy sediments of Eckernfoerde Bay, German Baltic Sea. Am J Sci 299:589–610CrossRefGoogle Scholar
  29. McGuire AD, Anderson LG, Christensen TR, Dallimore S, Guo L, Hayes DJ, Heimann M, Lorenson TD, Macdonald RW, Roulet N (2009) Sensitivity of the carbon cycle in the Arctic to climate change. Ecol Monogr 79(4):523–555CrossRefGoogle Scholar
  30. McGuire AD, Macdonald RW, Schuur EAG, Harden JW, Kuhry P, Hayes DJ, Christensen TR, Heimann M (2010) The carbon budget of the northern cryosphere region. Curr Opin Environ Sustain 2:231–236CrossRefGoogle Scholar
  31. Myhre CL, Ferre B et al (2016) Extensive release of methane from Arctic seabed west of Svalvard during summer 2014 does not influence the atmosphere. Geophys Res Lett 43:4624–4631.  https://doi.org/10.1002/2016GL068399 CrossRefGoogle Scholar
  32. Nishino S, Shimada K, Itoh M (2005) Use of ammonium and other nitrogen tracers to investigate the spreading of shelf waters in the western Arctic Ocean. J Geophys Res 110:C10005.  https://doi.org/10.1029/2003-JC002118 CrossRefGoogle Scholar
  33. Nishino S, Kikuchi T, Fujiwara A, Hirawake T, Aoyama M (2016) Water mass characteristics and their temporal changes in a biological hotspot in the southern Chukchi Sea. Biogeosciences 13:2563–2578.  https://doi.org/10.5194/bg-12-2563-2016 CrossRefGoogle Scholar
  34. Oremland RS (1979) Methanogenic activity in plankton samples and fish intestines: a mechanism for in situ methanogenesis in oceanic surface waters. Limnol Oceanogr 24(6):1136–1141CrossRefGoogle Scholar
  35. Permenteir F-JW, Christensen TR, Sorensen LL, Rysgaard S, McGuire AD, Miller PA, Walker DA (2013) The impact of lower sea-ice extent on Arctic greenhouse-gas exchange. Nat Clim Change 3:195–202.  https://doi.org/10.1038/nclimate1784 CrossRefGoogle Scholar
  36. Quay PD, King SL, Stutsman J, Wilbur DO, Steele LP, Fung I, Gammon RH, Brown TA, Farwell GW, Grootes PM, Schmidt FH (1991) Carbon isotopic composition of atmospheric methane: fossil and biomass burning source strength. Glob Biogeochem Cycles 5:25–47CrossRefGoogle Scholar
  37. Sansone FJ, Popp BN, Gase A, Graham AW, Rust TM (2001) Highly elevated methane in the eastern tropical north Pacific and associated isotopically enriched fluxes to the atmosphere. Geophys Res Lett 24:4567–4570CrossRefGoogle Scholar
  38. Sasakawa M, Tsunogai U, Kameyama S, Nakagawa F, Nojiri Y, Tsuda A (2008) Carbon isotopic characterization for the origin of excess methane in subsurface seawater. J Geophys Res 113:C03012.  https://doi.org/10.1029/2007JC004217 CrossRefGoogle Scholar
  39. Savvichev AS, Rusanov II, Pimenov NV, Zakharova EE, Veslopolpva EF, Lein AL, Crane K, Ivanov MV (2007) Microbial processes of the carbon and sulfur cycles in the Chukchi Sea. Mikrobiologiia 76(5):682–693.  https://doi.org/10.1134/S00262617070S0141 Google Scholar
  40. Shakhova N, Semiletov I, Panteleev G (2005) The distribution of methane on the Siberian Arctic shelves: implications for the marine methane cycle. Geophys Res Lett 32:L09601.  https://doi.org/10.1029/2005GL022751 CrossRefGoogle Scholar
  41. Shakhova N, Semiletov I, Salyuk A, Yusupov V, Kosmach D, Gustafsson O (2010) Extensive methane venting to the atmospheric from sediments of the east Siberian Arctic shelf. Science 327:1246.  https://doi.org/10.1126/science.118221 CrossRefGoogle Scholar
  42. Shakhova N, Semiletov I, Leifer I, Sergienko V, Salyuk A, Kosmach D, Stubbs C, Nicolsky D, Tumskoy V, Gustafsson O (2014) Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nat Geosci 7:64–70.  https://doi.org/10.1038/ngeo2007.
  43. Sugimoto A, Wada E (1993) Carbon isotopic composition of bacterial methane in a soil incubation experiment: contributions of acetate and CO2/H2. Geochim Cosmochim Acta 57:4015–4027CrossRefGoogle Scholar
  44. Tsunogai U, Ishibashi J, Wakita H, Gamo T, Watanabe K, Kajimura T, Kanayama S, Sakai H (1998) Methane rich plumes in Suruga Trough (Japan) and their carbon isotopic characterization. Earth Planet Sci Lett 160:97–105CrossRefGoogle Scholar
  45. Tsunogai U, Yoshida N, Ishibashi J, Gamo T (2000) Carbon isotopic distribution of methane in deep-sea hydrothermal plume, Myojin Knoll Caldera, Izu-Bonin arc: implications for microbial methane oxidation in the oceans and applications to heat flux estimation. Geochim Cosmochim Acta 64(14):2439–2452CrossRefGoogle Scholar
  46. Verzhbitsky V, Savostina T, Frantzen E, Little A, Sokolov SD, Tuchkova MI (2008) The Russian Chukchi Sea shelf. GEO ExPro 5(3):36–41Google Scholar
  47. Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97(C5):7373–7382CrossRefGoogle Scholar
  48. Watanabe S, Higashitani N, Tsurushima N, Tsunogai S (1995) Methane in the western North Pacific. J Oceanogr 51:39–60CrossRefGoogle Scholar
  49. Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314CrossRefGoogle Scholar
  50. Whiticar MJ, Faber E, Schoell M (1986) Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation—isotope evidence. Geochim Cosmochim Acta 50:693–709CrossRefGoogle Scholar
  51. Wiesenberg DA, Guinasso NL Jr (1979) Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water. J Chem Eng Data 24(4):356–360CrossRefGoogle Scholar
  52. Yamada K, Yoshida N, Nakagawa F, Inoue G (2005) Source evaluation of atmospheric methane over western Siberia using double stable isotopic signatures. Org Geochem 36:717–726CrossRefGoogle Scholar
  53. Yamada Y, Fukuda H, Uchimiya M, Motegi C, Nishino S, Kikuchi T, Nagata T (2015) Localized accumulation and a shelf-basin gradient of particles in the Chukchi Sea and Canada Basin, western Arctic. J Geophys Res Oceans 120:4638–4653.  https://doi.org/10.1002/2015JC010794 CrossRefGoogle Scholar
  54. Yoshikawa C, Hayashi E, Yamada K, Yoshida O, Toyoda S, Naohiro Y (2014) Mathane sources and sinks in the subtropical South Pacific along 17°S as traced by stable isotope ratios. Chem Geol 382:24–31CrossRefGoogle Scholar
  55. Zhang J, Zhan L, Chen L, Li Y, Chen J (2015) Coexistence of nitrous oxide undersaturation and oversaturation in the surface and subsurface of the western Arctic Ocean. J Geophys Res Oceans 120:8392–8401.  https://doi.org/10.1002/2015JC011245 CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Kushi Kudo
    • 1
  • Keita Yamada
    • 2
  • Sakae Toyoda
    • 2
  • Naohiro Yoshida
    • 1
    • 2
    • 3
  • Daisuke Sasano
    • 4
  • Naohiro Kosugi
    • 5
  • Masao Ishii
    • 5
  • Hisayuki Yoshikawa
    • 6
  • Akihiko Murata
    • 7
  • Hiroshi Uchida
    • 7
  • Shigeto Nishino
    • 7
  1. 1.Department of Environmental Chemistry and EngineeringTokyo Institute of TechnologyYokohamaJapan
  2. 2.Department of Chemical Science and EngineeringTokyo Institute of TechnologyYokohamaJapan
  3. 3.Earth-life Science Institute, Tokyo Institute of TechnologyMeguro-kuJapan
  4. 4.Japan Meteorological AgencyChiyoda-kuJapan
  5. 5.Meteorological Research Institute (MRI)TsukubaJapan
  6. 6.Faculty of Environmental Earth ScienceHokkaido UniversitySapporoJapan
  7. 7.Japan Agency for Marine-Earth Science and Technology (JAMSTEC)YokosukaJapan

Personalised recommendations