Journal of Oceanography

, Volume 72, Issue 2, pp 235–262 | Cite as

Data assimilation of sea ice concentration into a global ocean–sea ice model with corrections for atmospheric forcing and ocean temperature fields

  • Takahiro Toyoda
  • Yosuke Fujii
  • Tamaki Yasuda
  • Norihisa Usui
  • Koji Ogawa
  • Tsurane Kuragano
  • Hiroyuki Tsujino
  • Masafumi Kamachi
Original Article


A multivariate data assimilation experiment was conducted in order to improve the global representation of both the ocean and sea ice fields through the inclusion of sea ice concentration (SIC) data. Our method corrects the surface forcing and ocean temperature fields (as well as the SIC field) through the use of three-dimensional variational analysis. The adjustments to surface air temperatures resulting from the SIC assimilation are estimated on the basis of two constraints. First, we assume that the interfacial temperature difference between the surface air and the average value at the “top” of the grid (which represents a weighted mean according to the relative coverage of sea ice to open water within the grid) is maintained at the pre-assimilation value. Similarly, the vertical temperature structure for each of the five sea ice categories considered here remains unchanged throughout the assimilation. In making the necessary adjustments to upper-layer ocean temperatures, we again adopt a weighting procedure based on the condition that ice-free water temperature must remain the same. Thus, areas containing sea ice are allotted the freezing-point temperature such that the weighted mean value across the grid can be derived. The reproduction of the SIC field in both hemispheres is improved by incorporating the resulting corrections to the surface forcing and ocean temperature values, indicating that these boundary conditions produce results that are more consistent with the corrected SIC field in the sea ice model. The enhanced ocean–sea ice fields provide initial conditions that are better suited for coupled atmosphere–ocean–sea ice prediction experiments.


Data assimilation Ocean–sea ice model Sea ice concentration Air–ice drag coefficient Arctic Ocean Antarctic Ocean Operational system 



We are greatly indebted to Dr. J. P. Matthews for reviewing our paper. We thank three anonymous reviewers and Dr. K. Shimada, the editor, for their constructive comments. This work was supported partly by the Research Program on Climate Change Adaptation, the Green Network of Excellence (GRENE) Arctic Climate Change Research Project of the Ministry of Education, Culture, Sports, Science and Technology of the Japanese government and by the GCOM RA5 project "Retreival of Total Sea Ice Concentration from AMSR-E and AMSR2 Data using Optimal Estimation Techniques" of the Japan Aerospace Exploration Agency (JAXA). The data for this paper are available at the websites of NOAA’s National Centers for Environmental Information (for ETOPO5;, Japan Meteorological Agency (for JRA-25/JCDAS;, NOAA’s National Centers for Environmental Information (for WOD09, GTSPP and WOA09;, AVISO (for the altimeter products;, NEAR-GOOS (for MGDSST and COBE-SST;, Polar Science Center (for PHC;, and National Snow and Ice Data Center (for sea ice motion vectors and thickness;


  1. Aargaard K, Carmack EC (1989) The role of sea ice and other freshwater in the Arctic circulation. J Geophys Res 94:14485–14498CrossRefGoogle Scholar
  2. Antonov JI, Seidov D, Boyer TP, Locarnini RA, Mishonov AV, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009, Volume 2: Salinity. In: Levitus S (ed) NOAA Atlas NESDIS 69. US Government Printing Office, Washington DC, p 184Google Scholar
  3. Awaji T, Masuda S, Ishikawa Y, Sugiura N, Toyoda T, Nakamura T (2003) State estimation of the North Pacific Ocean by four-dimensional variational data assimilation experiment. J Oceanogr 59:931–943CrossRefGoogle Scholar
  4. Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. QJR Meteorol Soc 139:1132–1161. doi: 10.1002/qj.2063 CrossRefGoogle Scholar
  5. Bloom SC, Takacs L, daSilva AM, Ledvina D (1996) Data assimilation using incremental analysis updates. Mon Weather Rev 124:1256–1271CrossRefGoogle Scholar
  6. Boyer TP, Antonov JI, Baranova OK, Garcia HE, Johnson DR, Locarnini RA, Mishonov AV, O’Brien TD, Seidov D, Smolyar IV, Zweng MM (2009) World Ocean Database 2009. In: Levitus S (ed) NOAA Atlas NESDIS 66. US Government Printing Office, Washington, DC, p 216Google Scholar
  7. Brodeau L, Barnier B, Treguier AM, Penduff T, Gulev S (2010) An ERA40-based atmospheric forcing for global ocean circulation. Ocean Model 31:88–104. doi: 10.1016/j.ocemod.2009.10.005 CrossRefGoogle Scholar
  8. Bromwich DH, Fogt RL, Hodges KI, Walsh JE (2007) A tropospheric assessment of the ERA-40, NCEP, and JRA-25 global reanalyses in the polar regions. J Geophys Res 112:D10111. doi: 10.1029/2006JD007859 CrossRefGoogle Scholar
  9. Caya A, Buehner M, Carrieres T (2010) Analysis and forecasting of sea ice conditions with three-dimensional variational data assimilation and a coupled ice-ocean model. J Atmos Ocean Technol 27:353–369. doi: 10.1175/2009JTECHO701.1 CrossRefGoogle Scholar
  10. CLS (2012) Ssalto/Duacs user handbook: (M)SLA and (M)ADT near-real time and delayed-time products. CLS-DOS-NT-06-034, Issue 3.2, Collecte Localisation Satellites (CLS), Toulouse, p 58Google Scholar
  11. Comiso JC, Cavalieri DJ, Parkinson CL, Gloersen P (1997) Passive microwave algorithms for sea ice concentration: a comparison of two techniques. Remote Sens Environ 60:357–384CrossRefGoogle Scholar
  12. Comiso JC (2007) Enhanced sea ice concentrations from passive microwave data. NASA Goddard Space Flight Center, Greenbelt, Maryland, p 20Google Scholar
  13. Curry JA, Schramm JL, Ebert EE (1995) On the ice albedo climate feedback mechanism. J Clim 8:240–247CrossRefGoogle Scholar
  14. Curry JA, Rossow WB, Randall D, Schramm JL (1996) Overview of Arctic cloud and radiative characteristics. J Clim 9:1731–1764CrossRefGoogle Scholar
  15. Curry JA, Schramm JL, Alam A, Reeder R, Arbetter TE (2002) Evaluation of data sets used to force sea ice models in the Arctic Ocean. J Geophys Res 107:C108027. doi: 10.1029/2000JC000466 Google Scholar
  16. Danabasoglu G et al (2014) North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II). Part I: mean state. Ocean Model 73:76–107CrossRefGoogle Scholar
  17. Duffy PB, Eby M, Weaver AJ (1999) Effects of sinking of salt rejected during formation of sea ice on results of an ocean-atmosphere-sea ice climate model. Geopys Res Lett 26(12):1739–1742CrossRefGoogle Scholar
  18. Dulière V, Fichefet T (2007) On the assimilation of ice velocity and concentration data into large-scale sea ice models. Ocean Sci Dis 4:265–301CrossRefGoogle Scholar
  19. Eastwood S, Larsen KR, Lavergne T, Nielsen E, Tonboe R (2011) Global sea ice concentration reprocessing: product user manual. EUMETSAT OSI SAF report SAF/OSI/CDOP/, EUMETSAT Ocean & Sea Ice Satellite Application Facilities, Darmstadt, p 38Google Scholar
  20. Edwards MO (1989) Global gridded elevation and bathymetry on 5-minute geographic grid (ETOPO5). NOAA, National Geophysical Data Center, Boulder, ColoradoGoogle Scholar
  21. Fenty IG (2010) State estimation of the Labrador Sea with a coupled sea ice-ocean adjoint model. PhD thesis, Massachusetts Institute of Technology, p 277Google Scholar
  22. Fenty IG, Heimbach P (2013) Coupled sea ice-ocean state estimation in the Labrador Sea and Baffin Bay. J Phys Oceanogr 43(6):884–904. doi: 10.1175/JPO-D-12-065.1 CrossRefGoogle Scholar
  23. Flocco D, Feltham DL, Turner AK (2010) Incorporation of a physically based melt pond scheme into the sea ice component of a climate model. J Geophys Res 115:C08012. doi: 10.1029/2009JC005568 Google Scholar
  24. Fowler C, Tschudi M (2003) Polar Pathfinder Daily 25 km EASE-grid sea ice motion vectors, monthly mean fields. National Snow and Ice Data Center, Boulder, ColoradoGoogle Scholar
  25. Fujii Y, Kamachi M (2003a) A reconstruction of observed profiles in the sea east of Japan using vertical coupled temperature-salinity EOF modes. J Oceanogr 59:173–186CrossRefGoogle Scholar
  26. Fujii Y, Kamachi M (2003b) Three-dimensional analysis of temperature and salinity in the equatorial Pacific using a variational method with vertical coupled temperature-salinity empirical orthogonal function modes. J Geophys Res 108:3297. doi: 10.1029/2002JC001745 CrossRefGoogle Scholar
  27. Gill AE (1982) Atmosphere-ocean dynamics. Academic Press, London, p 662Google Scholar
  28. Hamilton D (1994) GTSPP builds an ocean temperature-salinity database. Earth Syst Monit 4:4–5Google Scholar
  29. Hibler WD III (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9:815–846CrossRefGoogle Scholar
  30. Hibler WD III, Walsh JE (1982) On modeling seasonal and interannual fluctuations of Arctic sea ice. J Phys Oceanogr 12:1514–1523CrossRefGoogle Scholar
  31. Honda M, Inoue J, Yamane S (2009) Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys Res Lett 36:L08707. doi: 10.1029/2008GL037079 CrossRefGoogle Scholar
  32. Hunke EC, Dukowicz JK (1997) The elastic-viscous-plastic model for sea ice dynamics. J Phys Oceanogr 94:1849–1867CrossRefGoogle Scholar
  33. Hunke EC, Dukowicz JK (2002) The elastic-viscous-plastic sea ice dynamics model in general orthogonal curvilinear coordinates on a sphere: incorporation of metric terms. Mon Weather Rev 130:1848–1865CrossRefGoogle Scholar
  34. Hunke EC, Lipscomb WH (2010) CICE: the Los Alamos Sea Ice Model Documentation and Software User’s Manual Version 4.1. LA-CC-06-012, Los Alamos National Laboratory, Los Alamos, pp 76Google Scholar
  35. Inoue J, Hori ME, Enomoto T, Kikuchi T (2011) Intercomparison of surface heat transfer near the Arctic marginal ice zone for multiple reanalyses: a case study of September 2009. SOLA 7:57–60. doi: 10.2151/sola.2011-015 CrossRefGoogle Scholar
  36. Ishii M, Shouji A, Sugimoto S, Matsumoto T (2005) Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the KOBE collection. Int J Climatol 25:865–879CrossRefGoogle Scholar
  37. Jakobson E, Vihma T, Palo T, Jakobson L, Keernik H, Jaagus J (2012) Validation of atmospheric reanalyses over the central Arctic Ocean. Geophys Res Lett 39:L10802. doi: 10.1029/2012GL051591 Google Scholar
  38. Johannessen OM, Shalina EV, Miles MW (1999) Satellite evidence for an Arctic sea ice cover in transformation. Science 286:1937–1939. doi: 10.1126/science.286.5446.1937 CrossRefGoogle Scholar
  39. Johnson M, Proshutinsky A, Aksenov Y, Nguyen AT, Lindsay R, Haas C, Zhang J, Diansky N, Kwok R, Maslowski W, Häkkinen S, Ashik I, de Cuevas B (2012) Evaluation of Arctic sea ice thickness simulated by Arctic Ocean Model Intercomparison Project models. J Geophys Res 117:C00D13. doi: 10.1029/2011JC007257 Google Scholar
  40. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Met Soc 77:437–471CrossRefGoogle Scholar
  41. Kanamitsu M, Ebisuzaki W, Woolen J, Potter J, Fiorino M (2002) NCEP/DOE AMIP-II reanalysis (R-2). Bull Am Met Soc 83:1631–1643CrossRefGoogle Scholar
  42. Kawaguchi Y, Hutching JK, Kikuchi T, Morison JH, Krishfield RA (2012) Anomalous sea-ice reduction in the Eurasian Basin of the Arctic Ocean during summer 2010. Polar Sci 6:39–53CrossRefGoogle Scholar
  43. Kubota M, Kano A, Muramatsu H, Tomita H (2003) Intercomparison of various surface latent heat flux fields. J Clim 16:670–678CrossRefGoogle Scholar
  44. Kurihara Y, Sakurai T, Kuragano T (2006) Global daily sea surface temperature analysis using data from satellite microwave radiometer, satellite infrared radiometer and in situ observations. Wea Bull 73:1–18 (in Japanese) Google Scholar
  45. Kwok R, Cunningham GF, Pang SS (2004) Fram Strait sea ice outflow. J Geophys Res 109:C01009. doi: 10.1029/2003JC001785 Google Scholar
  46. Kwok R, Cunningham GF, Wensnahan M, Rigor I, Zwally HJ, Yi D (2009) Thinning and volume loss of the Arctic Ocean sea ice cover: 2003-2008. J Geophys Res 114:C07005. doi: 10.1029/2009JC005312 Google Scholar
  47. Large WG, Yeager SG (2004) Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. NCAR Tech Note 460, CGD Division of the National Center for Atmospheric Research, Boulder, ColoradoGoogle Scholar
  48. Large WG, Yeager SG (2009) The global climatology of an interannually varying air sea flux data set. Clim Dyn 33:341–364. doi: 10.1007/s00382-008-0441-3 CrossRefGoogle Scholar
  49. Laxon SW, Giles KA, Ridout AL, Wingham DJ, Willatt R, Cullen R, Kwok R, Schweiger A, Zhang J, Haas C, Hendricks S, Krishfield R, Kurtz N, Farrell S, Davidson M (2013) CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys Res Lett 40:732–737. doi: 10.1002/grl.50193 CrossRefGoogle Scholar
  50. Lindsay RW, Zhang J (2006) Assimilation of ice concentration in an ice-ocean model. J Atmos Ocean Technol 23:742–749CrossRefGoogle Scholar
  51. Lindsay RW, Haas C, Hendricks S, Hunkeler P, Kuntz N, Paden J, Panzer B, Sonntag J, Yungel J, Zhang J (2012) Seasonal forecasts of Arctic sea ice initialized with observations of ice thickness. Geophys Res Lett 39:L21502. doi: 10.1029/2012GL053576 CrossRefGoogle Scholar
  52. Lindsay RW, Wensnahan M, Schweiger A, Zhang J (2014) Evaluation of seven different atmospheric reanalysis products in the Arctic. J Climate 27:2588–2606. doi: 10.1175/JCLI-D-13-00014.1 CrossRefGoogle Scholar
  53. Lisæter KA, Rosanova J, Evensen G (2003) Assimilation of ice concentration in a coupled ice-ocean model using the ensemble Kalman filter. Ocean Dyn 53:368–388. doi: 10.1007/s10236-003-0049-4 CrossRefGoogle Scholar
  54. Liu J, Curry JA, Rossow WB, Key JR, Wang X (2005) Comparison of surface radiative flux data sets over the Arctic Ocean. J Geophys Res 110(C02015):1–13. doi: 10.1029/2004JC002381 Google Scholar
  55. Liu J, Zhang Z, Hu Y, Chen L, Dai Y, Ren X (2008) Assessment of surface air temperature over the Arctic Ocean in reanalysis and IPCC AR4 model simulations with IABP/POLES observations. J Geophys Res 113:D10105. doi: 10.1029/2007JD009380 CrossRefGoogle Scholar
  56. Liu J, Curry JA, Wang H, Song M, Horton RM (2012) Impact of declining Arctic sea ice on winter snowfall. Proc Natl Acad Sci 109:4074–4079CrossRefGoogle Scholar
  57. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009, Volume 1: Temperature. In: Levitus S (ed) NOAA Atlas NESDIS 68. US Government Printing Office, Washington DC, p 184Google Scholar
  58. Martin T, Wadhams P (1999) Sea-ice flux in the East Greenland Current. Deep-Sea Res II 46:1063–1082CrossRefGoogle Scholar
  59. Matsumura Y, Hasumi H (2008) Brine-driven eddies under sea ice leads and their impact on the Arctic Ocean mixed layer. J Phys Oceanogr 38:146–163. doi: 10.1175/2007JPO3620.1 CrossRefGoogle Scholar
  60. Meier WN, Maslanik JA (2003) Effect of environmental conditions on observed, modeled, and assimilated sea ice motion errors. J Geophys Res 108(C5):3152. doi: 10.1029/2002JC001333 CrossRefGoogle Scholar
  61. Meier WN, Maslanik JA, Fowler CW (2000) Error analysis and assimilation of remotely sensed ice motion within an Arctic sea ice model. J Geophys Res 105(C2):3339–3356CrossRefGoogle Scholar
  62. Mellor GL, Kantha L (1989) An ice-ocean coupled model. J Geophys Res 94:10937–10954CrossRefGoogle Scholar
  63. Miller PA, Laxon SW, Feltham DL, Cresswell DJ (2006) Optimization of a sea ice model using basinwide observations of Arctic sea ice thickness, extent, and velocity. J Clim 19(7):1089–1108CrossRefGoogle Scholar
  64. Murray RJ (1996) Explicit generation of orthogonal grids for ocean models. J Comput Phys 126:287–302CrossRefGoogle Scholar
  65. Nakamura N, Oort AH (1988) Atmospheric heat budgets of the polar regions. J Geophys Res 93(D8):9510–9524CrossRefGoogle Scholar
  66. Nguyen AT, Menemenlis D, Kwok R (2011) Arctic ice-ocean simulation with optimized model parameters: approach and assessment. J Geophys Res 116:C04025. doi: 10.1029/2010JC006573 Google Scholar
  67. Noh Y (2004) Sensitivity to wave breaking and the Prandtl number in the ocean mixed layer model and its dependence on latitude. Geophys Res Lett 31:L23305. doi: 10.1029/2004GL021289 CrossRefGoogle Scholar
  68. Onogi K, Tsutsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H, Matsumoto T, Yamazaki N, Kamahori H, Takahashi K, Kadokura S, Wada K, Oyama R, Ose T, Mannoji N, Taira R (2007) The JRA-25 reanalysis. J Met Soc Jpn 85:369–432CrossRefGoogle Scholar
  69. Proshutinsky A, Aksenov Y, Kinney JC, Gerdes R, Golubeva E, Holland D, Holloway G, Jahn A, Johnson M, Popova E, Steele M, Watanabe E (2011) Recent advances in Arctic Ocean studies employing models from the Arctic Ocean model intercomparison project. Oceanogr 24:102–113CrossRefGoogle Scholar
  70. Rabe B, Karcher M, Schauer U, Toole JM, Krishfield RA, Pisarev S, Kauker F, Gerdes R, Kikuchi T (2011) Deep-Sea Res I 58:173–185. doi: 10.1016/j.dsr.2010.12.002 CrossRefGoogle Scholar
  71. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625CrossRefGoogle Scholar
  72. Rollenhagen K, Timmermann R, Janjić T, Schröter J, Danilov S (2009) Assimilation of sea ice motion in a finite-element sea ice model. J Geophys Res 114:C05007. doi: 10.1029/2008JC005067 Google Scholar
  73. Serreze MC, Barry RG (2005) The Arctic Climate System. In: Dessler AJ, Houghton JT, Rycroft MJ (eds) Cambridge Univ Press, New York, pp 385Google Scholar
  74. Serreze MC, Barrett AP, Slater AG, Steele M, Zhang J, Trenberth KE (2007) The large-scale energy budget of the Arctic. J Geophys Res 112:D11122. doi: 10.1029/2006JD008230 CrossRefGoogle Scholar
  75. Stark JD, Ridley J, Martin M, Hines A (2008) Sea ice concentration and motion assimilation in a sea ice-ocean model. J Geophys Res 113:C05S91. doi: 10.1029/2007JC004224 Google Scholar
  76. Steele M, Boyd T (1998) Retreat of the cold halocline layer in the Arctic Ocean. J Geophys Res 103(C5):10419–10435CrossRefGoogle Scholar
  77. Steele M, Zhang J, Rothrock D, Stern H (1997) The force balance of sea ice in a numerical model of the Arctic Ocean. J Geophys Res 102(C9):21061–21079CrossRefGoogle Scholar
  78. Steele M, Morley R, Ermold W (2001) PHC: a global ocean hydrography with a high quality Arctic Ocean. J Clim 14:2079–2087CrossRefGoogle Scholar
  79. Thomas DR, Rothrock DA (1989) Blending sequential scanning multichannel microwave radiometer and buoy data into a sea ice model. J Geophys Res 94(C8):10907–10920CrossRefGoogle Scholar
  80. Thomas DR, Rothrock DA (1993) The Arctic Ocean ice balance: a Kalman smoother estimate. J Geophys Res 98(C6):10053–10067CrossRefGoogle Scholar
  81. Thomas DR, Martin S, Rothrock DA, Steele M (1996) Assimilating satellite concentrations into an Arctic mass balance model: 1979–1985. J Geophys Res 101(C9):20849–20868CrossRefGoogle Scholar
  82. Toyoda T, Awaji T, Sugiura N, Masuda S, Igarashi H, Sasaki Y, Hiyoshi Y, Ishikawa Y, Mochizuki T, Sakamoto TT, Tatebe H, Komuro Y, Suzuki T, Nishimura T, Mori M, Chikamoto Y, Yasunaka S, Imada Y, Arai M, Watanabe M, Shiogama H, Nozawa T, Hasegawa A, Ishii M, Kimoto M (2011) Impact of the assimilation of sea ice concentration data on an atmospheric-ocean-sea ice coupled simulation of the Arctic Ocean climate. SOLA 7:37–40. doi: 10.2151/sola.2011-010 CrossRefGoogle Scholar
  83. Toyoda T, Fujii Y, Yasuda T, Usui N, Iwao T, Kuragano T, Kamachi M (2013) Improved analysis of seasonal-interannual fields using a global ocean data assimilation system. Theor Appl Mech Jpn 61:31–48. doi: 10.11345/nctam.61.31 Google Scholar
  84. Trenberth KE, Fasullo JT (2010) Simulation of present-day and twenty-century energy budgets of the Southern Ocean. J Clim 23:440–454. doi: 10.1175/2009JCL13152.1 CrossRefGoogle Scholar
  85. Tsujino H, Motoi T, Ishikawa I, Hirabara M, Nakano H, Yamanaka G, Yasuda T, Ishiazaki H (2010) Reference manual for the Meteorological Research Institute Community Ocean Model (MRI.COM) version 3. Tech Rep 59, Meteorological Research Institute, Tsukuba, Japan, pp 241Google Scholar
  86. Tsujino H, Hirabara M, Nakano H, Yasuda T, Motoi T, Yamanaka G (2011) Simulating present climate of the global ocean-ice system using the Meteorological Research Institute Community Ocean Model (MRI.COM): simulation characteristics and variability in the Pacific sector. J Oceanogr 67:449–479. doi: 10.1007/s10872-011-0050-3 CrossRefGoogle Scholar
  87. Uotila P, O’Farrell S, Marsland SJ, Bi D (2012) A sea-ice sensitivity study with a global ocean-ice model. Ocean Model 51:1–18. doi: 10.1016/j.ocemod.2012.04.002 CrossRefGoogle Scholar
  88. Uppala SM, Kållberg PW, Simmons AJ, Andrae U, da Costa BV, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simons P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. QJR Meteorol Soc 131:2961–3012. doi: 10.1256/qj.04.176 CrossRefGoogle Scholar
  89. Usui N, Ishizaki S, Fujii Y, Tsujino H, Yasuda T, Kamachi M (2006) Meteorological Research Institute multivariate ocean variational estimation (MOVE) system: some early results. Adv Space Res 37:806–822. doi: 10.1016/j.asr.2005.09.022 CrossRefGoogle Scholar
  90. Usui N, Imaizumi T, Tsujino H (2010) Toward introduction of assimilation of ice concentration into MOVE/MRI.COM: a model validation and a simple assimilation experiment in the Sea of Okhotsk. Sokkou-Jihou 77:S71–S82 (in Japanese) Google Scholar
  91. Van Woert ML, Zou CZ, Meier WN, Hovey PD, Preller RH, Weaver RLS, Steffen K, Heinrichs J, Maslanik JA, Posey PG (2004) Forecast verification of the Polar Ice Prediction System (PIPS) sea ice concentration fields. J Atmos Ocean Technol 21:944–957CrossRefGoogle Scholar
  92. Vancoppenolle M, Timmermann R, Ackley SF, Fichefet T, Goosse H, Heil P, Leonard KC, Lieser J, Nicolaus M, Papakyriakou T, Tison JL (2011) Assessment of radiation forcing data sets for large-scale sea ice models in the Southern Ocean. Deep Sea Res II 58:1237–1249. doi: 10.1016/j.dsr2.2010.10.039 CrossRefGoogle Scholar
  93. Vinje T, Nordlund N, Kvambekk Å (1998) Monitoring ice thickness in the Fram Strait. J Geophys Res 103:10437–10449CrossRefGoogle Scholar
  94. Williams TD, Bennetts LG, Squire VA, Dumont D, Bertino L (2013a) Wave-ice interactions in the marginal ice zone. Part 1: theoretical foundations. Ocean Model 71:81–91. doi: 10.1016/j.ocemod.2013.05.010 CrossRefGoogle Scholar
  95. Williams TD, Bennetts LG, Squire VA, Dumont D, Bertino L (2013b) Wave-ice interactions in the marginal ice zone. Part 2: numerical implementation and sensitivity studies along 1D transects of the ocean surface. Ocean Model 71:92–101. doi: 10.1016/j.ocemod.2013.05.011 CrossRefGoogle Scholar
  96. Woodgate RA, Aagaard K (2005) Revising the Bering Strait freshwater flux into the Arctic Ocean. Geophys Res Lett 32:L02602. doi: 10.1029/2004GL021747 Google Scholar
  97. Yi D, Zwally J (2010) Arctic sea ice freeboard and thickness. National Snow and Ice Data Center, Boulder, ColoradoGoogle Scholar
  98. Zhang J, Thomas DR, Rothrock DA, Lindsay RW, Yu Y (2003) Assimilation of ice motion observations and comparisons with submarine ice thickness data. J Geophys Res 108(C6):3170. doi: 10.1029/2001JC001041 CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan 2015

Authors and Affiliations

  • Takahiro Toyoda
    • 1
  • Yosuke Fujii
    • 1
  • Tamaki Yasuda
    • 2
  • Norihisa Usui
    • 1
  • Koji Ogawa
    • 3
  • Tsurane Kuragano
    • 1
  • Hiroyuki Tsujino
    • 1
  • Masafumi Kamachi
    • 1
  1. 1.Oceanography and Geochemistry Research Department, Meteorological Research InstituteJapan Meteorological AgencyIbarakiJapan
  2. 2.Global Environment and Marine DepartmentJapan Meteorological AgencyTokyoJapan
  3. 3.Fukuoka Regional HeadquartersJapan Meteorological AgencyFukuokaJapan

Personalised recommendations