Journal of Oceanography

, Volume 71, Issue 3, pp 263–270 | Cite as

Underestimation of nutrient fluxes due to possible bacterial activity during a core incubation experiment

  • Kazuo Abe
  • Mutsumi Tsujino
  • Takehiro Kazama
  • Norihisa Nakagawa
  • Katsuyuki Abo
Original Article


Examinations of sediment core incubation and calculations of diffusive nutrient fluxes based on the difference between the nutrient concentration in pore water and that in the overlying water were carried out to evaluate the benthic fluxes of nutrients such as phosphate (PO4), ammonium (NH4), and silicic acid [Si(OH)4] from the sediment–water interface. Test surface-sediment samples were collected in the western area of the Seto Inland Sea in October 2013 and January 2014. They were incubated onboard the ship for intervals of approximately 40–90 h, and changes in the concentrations of nutrients in the overlying water with incubation time were monitored. Furthermore, in order to inhibit bacterial activity, sodium azide (NaN3) was added to the overlying water of another incubation system, whereupon nutrient concentrations in the overlying water were observed to increase linearly with incubation time. On the other hand, when NaN3 was not added, a linear increase was observed in the Si(OH)4 concentration but not in those of PO4 and NH4. The calculated diffusive fluxes generally agreed with those obtained from core incubation with the addition of NaN3. These findings suggest that the elution of PO4 and NH4 from the sediment–water interface during a core incubation experiment can be affected by bacterial activity, which could potentially lead to the underestimation of benthic fluxes. Therefore, great care should be taken when carrying out incubations of surface sediment, and they should be performed along with calculations of diffusive fluxes.


Nutrients Benthic flux Core incubation Sediment–water interface Western Seto Inland Sea 



The authors deeply appreciate the sampling assistance that was provided by the officers and crew of the R/V Shirafuji-Maru. The authors also express their special thanks to two anonymous referees and the editor of the Journal of Oceanography for kindly providing constructive comments.


  1. Anneli G, Blomqvist S (1997) Phosphate exchange across the sediment–water interface when shifting from anoxic to oxic conditions—an experimental comparison of freshwater and brackish-marine systems. Biogeochem 37:203–226CrossRefGoogle Scholar
  2. Belias C, Dassenakis M, Scoullos M (2007) Study of the N, P and Si fluxes between fish farm sediment and seawater, results of simulation experiments employing a benthic chamber under various redox conditions. Mar Chem 103:266–275CrossRefGoogle Scholar
  3. Berelson WM, McManus J, Severnmann S, Reimers CE (2013) Benthic flux of oxygen and nutrients across Oregon/California shelf sediments. Cont Shelf Res 55:66–75Google Scholar
  4. Caraco NF, Lampman G, Cole JJ, Limburg KE, Pace ML, Fisher D (1998) Microbial assimilation of DIN in a nitrogen rich estuary: implications for food quality and isotope studies. Mar Ecol Prog Ser 167:59–71CrossRefGoogle Scholar
  5. Date E (2008) The study on the conditions of the denitrification rates in the bottom of sea area occurred oxygen-deficient water mass. Bull Hiroshima Pre Technol Res Inst Pub Health Environ Cent 16:41–44 (in Japanese)Google Scholar
  6. Devol AH, Christensen JP (1993) Benthic fluxes and nitrogen cycling in sediments of the continental margin of the eastern North Pacific. J Mar Res 51:345–372CrossRefGoogle Scholar
  7. Engelsen A, Hulth S, Pihl L, Sundbӓck K (2008) Benthic trophic status and nutrient fluxes in shallow-water sediments. Estuar Coast Shelf Sci 78:783–795CrossRefGoogle Scholar
  8. Fujiwara T, Uno N, Tada K, Nakatsuji K, Kasai A, Sakamoto W (1997) Inflow of nitrogen and phosphorus from the ocean into Seto Sea. Proc Coast Eng JSCE 44–2:1061–1065 (in Japanese)Google Scholar
  9. Gaertner-Mazouni N, Locoste E, Bodoy A, Peacock L, Rodier M, Langlade M-J, Orempuller J, Charpy L (2012) Nutrient fluxes between water column and sediments: potential influence of the pearl oyster culture. Mar Pollut Bull 65:500–505CrossRefGoogle Scholar
  10. Grandel S, Rickert D, Schlüter M, Wallmann K (2000) Pore-water distribution and quantification of diffusive benthic fluxes of silicic acid, nitrate and phosphate in surface sediments of the deep. Arabian Sea Dee Sea Res II 47:2707–2734CrossRefGoogle Scholar
  11. Hirota R, Hata Y, Ikeda T, Ishida T, Kuroda A (2010) The silicon layer supports acid resistance on Bacillus cereus spores. J Bacteriol 192:111–116CrossRefGoogle Scholar
  12. Hoch MP, Kirchman DL (1995) Ammonium uptake by heterotrophic bacteria in the Delaware estuary and adjacent coastal waters. Limnol Oceanogr 40:886–897CrossRefGoogle Scholar
  13. Kirchman DL (1994) The uptake of inorganic nutrients by heterotrophic bacteria. Microb Ecol 28:255–271CrossRefGoogle Scholar
  14. Middelburg JJ, Nieuwenhuize J (2000a) Uptake of dissolved inorganic nitrogen in turbid, tidal estuaries. Mar Ecol Prog Ser 192:79–88CrossRefGoogle Scholar
  15. Middelburg JJ, Nieuwenhuize J (2000b) Nitrogen uptake by heterotrophic bacteria and phytoplankton in the nitrate-rich Thames estuary. Mar Ecol Prog Ser 203:13–21CrossRefGoogle Scholar
  16. Nagao M, Hashimoto E, Zhu X-H, Yoshida M, Takasugi Y (2000) Continuous measurement of bottom-oxygen demand in Hiroshima Bay. Bull Jpn Soc Civil Eeng II 53:109–117 (in Japanese with an English abstract)Google Scholar
  17. Orihel DM, Rooney R (2012) A field-based techniqiue for sediment incubation experiments. J Limnol 71:233–235CrossRefGoogle Scholar
  18. Ospina-Alvarez N, Caetano M, Vale C, Santos-Echeandia J, Bernárdez P, Prego R (2014) Exchange of nutrients across the sediment–water interface in intertidal ria systems (SW Europe). J Sea Res 85:349–358CrossRefGoogle Scholar
  19. Reimers CE, Ozkan-Haller HT, Berg P, Devol A, McCann-Grosvenor K, Sanders RD (2012) Benthic oxygen consumption rates during hypoxic conditions on the Oregon continental shelf: evaluation of the eddy correlation method. J Geophysic Res 117:C02021CrossRefGoogle Scholar
  20. Sarker MJ, Yamamoto T, Hashimoto T, Ohmura T (2005) Evaluation of benthic nutrient fluxes and their importance in the pelagic nutrient cycles in Suo Nada, Japan. Fish Sci 71:593–604CrossRefGoogle Scholar
  21. Srithongouthai S, Sonoyama Y, Tada K, Montani S (2003) The influence of environmental variability on silicate exchange rates between sediment and water in a shallow-water coastal ecosystem, the Seto Inland Sea, Japan. Mar Pollut Bull 47:10–17CrossRefGoogle Scholar
  22. Takeoka H, Kikuchi T, Hayami Y, Sakakihara T (2002) Nutrients originated from the open ocean in the Seto Inland Sea. Gekkan-Kaiyo 34:406–411 (in Japanese)Google Scholar
  23. Vittor CD, Faganeli J, Emili A, Covelli S, Predonzani S, Acquavita A (2012) Benthic fluxes of oxygen, carbon and nutrients in the Marano and Grado Lagoon (northern Adriatic Sea, Italy). Estuar Coast Shelf Sci 113:57–70CrossRefGoogle Scholar
  24. Vopel K, Wilson PS, Zeldis J (2012) Sediment–seawater solute flux in a polluted New Zealand estuary. Mar Poll Bull 64:2885–2891Google Scholar
  25. Wheeler PA, Kirchman DL (1986) Utilization of inorganic and organic nitrogen by bacteria in marine systems. Limnol Oceanogr 31:998–1009CrossRefGoogle Scholar
  26. Wilson JG, Brennan MT (2004) Spatial and temporal variability in modelled nutrient fluxes from the unpolluted Shannon estuary, Ireland, and the implications for microphytobenthic productivity. Estuar Coast Shelf Sci 60:193–201Google Scholar
  27. Yamamoto T (2003) The Seto Inland Sea—eutrophic or oligotrophic? Mar Poll Bull 47:37–42Google Scholar
  28. Yanagi T, Ishii D (2004) Open ocean originated phosphorus and nitrogen in the Seto Inland Sea, Japan. J Oceanogr 60:1001–1005Google Scholar
  29. Zhang L, Wang L, Yin K, Lü Y, Zhang D, Yang Y, Huang X (2013) Pore water nutrient characteristics and the fluxes across the sediment in the Pearl River estuary and adjacent waters, China. Estuar Coast Shelf Sci 133:182–192CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan 2015

Authors and Affiliations

  • Kazuo Abe
    • 1
  • Mutsumi Tsujino
    • 1
  • Takehiro Kazama
    • 1
  • Norihisa Nakagawa
    • 1
  • Katsuyuki Abo
    • 1
  1. 1.National Research Institute of Fisheries and Environment of Inland SeaHatsukaichiJapan

Personalised recommendations