Journal of Oceanography

, Volume 70, Issue 5, pp 415–424 | Cite as

Application of chemical tracers to an estimate of benthic denitrification in the Okhotsk Sea

  • Masanori Ito
  • Yutaka W. Watanabe
  • Masahito Shigemitsu
  • Shinichi S. Tanaka
  • Jun Nishioka
Original Article


To estimate benthic denitrification in a marginal sea, we assessed the usefulness of \({\text{N}}_{2}^{*}\), a new tracer to measure the excess nitrogen gas (N2) using dissolved N2 and argon (Ar) with N* in the intermediate layer (26.6–27.4σ θ ) of the Okhotsk Sea. The examined parameters capable of affecting \({\text{N}}_{2}^{*}\) are denitrification, air injection and rapid cooling. We investigated the relative proportions of these effects on \({\text{N}}_{2}^{*}\) using multiple linear regression analysis. The best model included two examined parameters of denitrification and air injection based on the Akaike information criterion as a measure of the model fit to data. More than 80 % of \({\text{N}}_{2}^{*}\) was derived from the denitrification, followed by air injection. Denitrification over the Okhotsk Sea shelf region was estimated to be 5.6 ± 2.4 μmol kg−1. The distribution of \({\text{N}}_{2}^{*}\) was correlated with potential temperature (θ) between 26.6 and 27.4σ θ (r = −0.55). Therefore, we concluded that \({\text{N}}_{2}^{*}\) and N* can act complementarily as a quasi-conservative tracer of benthic denitrification in the Okhotsk Sea. Our findings suggest that \({\text{N}}_{2}^{*}\) in combination with N* is a useful chemical tracer to estimate benthic denitrification in a marginal sea.


Benthic denitrification The marginal sea The Okhotsk Sea Chemical tracer Multiple linear regression analysis 



We thank the officers and crew of R/Vs Professor Khromov, Hokko-maru, for their kind cooperation in the fieldwork. We also wish to thank T. Nakatsuka (Nagoya University) and T. Ono (Fisheries Research Agency) for useful advice. The constructive comments of two anonymous reviewers that greatly improved this submission were highly appreciated. A part of this work was supported by the Ministry of Education, Science and Culture KAKEN grants no. 22221001 (M. Wakatsuchi, Hokkaido University).


  1. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) 2nd International symposium on information theory. Publishing House of the Hungarian Academy of Sciences, Budapest, pp 268–281Google Scholar
  2. Brandes JA, Devol AH, Deutsch C (2007) New developments in the marine nitrogen cycle. Chem Rev 107:577–589. doi: 10.1021/cr050377t CrossRefGoogle Scholar
  3. Capone DG, Zehr JP, Paerl HW, Bergman B, Carpenter EJ (1997) Trichodesmium, a globally significant marine cyanobacterium. Science 276:1221–1229. doi: 10.1126/science.276.5316.1221 CrossRefGoogle Scholar
  4. Carpenter JH (1965) The Chesapeake Bay Institute technique for the Winkler dissolved oxygen method. Limnol Oceanogr 10:141–143. doi: 10.4319/lo.1965.10.1.0141 CrossRefGoogle Scholar
  5. Chang BX, Devol AH, Emerson SR (2010) Denitrification and the nitrogen gas excess in the eastern tropical South Pacific oxygen deficient zone. Deep-Sea Res Part I 57:1092–1101. doi: 10.1016/j.dsr.2010.05.009 CrossRefGoogle Scholar
  6. Christensen JP, Murray JW, Devol AH, Codispoti LA (1987) Denitrification in continental shelf sediments has major impact on the oceanic nitrogen budget. Global Biogeochem Cycles 1:97–116. doi: 10.1029/GB001i002p00097 CrossRefGoogle Scholar
  7. Codispoti LA (2007) An oceanic fixed nitrogen sink exceeding 400 Tg Na−1 vs the concept of homeostasis in the fixed-nitrogen inventory. Biogeosciences 4:233–253. doi: 10.5194/bg-4-233-2007 CrossRefGoogle Scholar
  8. Codispoti LA, Christensen JP (1985) Nitrification, denitrification and nitrous oxide cycling in the eastern tropical South Pacific Ocean. Mar Chem 16:277–300. doi: 10.1016/0304-4203(85)90051-9 CrossRefGoogle Scholar
  9. Codispoti LA, Brandes JA, Christensen JP, Devol AH, Naqvi SWA, Paerl HW, Yoshinari T (2001) The oceanic fixed nitrogen and nitrous oxide budgets: moving targets as we enter the anthropocene? Sci Mar 65:85–105. doi: 10.3989/scimar.2001.65s285 CrossRefGoogle Scholar
  10. Codispoti LA, Yoshinari T, Devol AH (2005) Suboxic respiration in the oceanic water column. In: del Giorgio PA, Williams PJlB (eds) Respiration in aquatic ecosystems. Oxford University Press, Oxford, pp 225–247CrossRefGoogle Scholar
  11. Coles VJ, Hood RR (2007) Modeling the impact of iron and phosphorus limitations on nitrogen fixation in the Atlantic Ocean. Biogeosciences 4:455–479. doi: 10.5194/bg-4-455-2007 CrossRefGoogle Scholar
  12. Craig H, Weiss RF (1971) Dissolved gas saturation anomalies and excess helium in the ocean. Earth Planet Sci Lett 10:289–296. doi: 10.1016/0012-821X(71)90033-1 CrossRefGoogle Scholar
  13. Crowe SA, Canfield DE, Mucci A, Sundby B, Maranger R (2012) Anammox, denitrification and fixed-nitrogen removal in sediments from the Lower St. Lawrence Estuary. Biogeosciences 9:4309–4321. doi: 10.5194/bg-9-4309-2012 CrossRefGoogle Scholar
  14. Devol AH, Uhlenhopp AG, Naqvi SWA, Brandes JA, Jayakumar DA, Naik H, Gaurin S, Codispoti LA, Yoshinari T (2006) Denitrification rates and excess nitrogen gas concentrations in the Arabian Sea oxygen deficient zone. Deep-Sea Res Part I 53:1533–1547. doi: 10.1016/j.dsr.2006.07.005 CrossRefGoogle Scholar
  15. DeVries T, Deutsch C, Primeau F, Chang B, Devol A (2012) Global rates of water-column denitrification derived from nitrogen gas measurements. Nat Geosci 5:550. doi: 10.1038/ngeo1515 CrossRefGoogle Scholar
  16. Eugster O, Gruber N (2012) A probabilistic estimate of global marine N-fixation and denitrification. Global Biogeochem Cycles 26, GB4013. 10.1029/2012gb004300
  17. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vörösmarty CJ (2004) Nitrogen Cycles: past, present, and future. Biogeochemistry 70:153–226. doi: 10.1007/s10533-004-0370-0 CrossRefGoogle Scholar
  18. Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–2815. doi: 10.1890/02-3114 CrossRefGoogle Scholar
  19. Gruber N (2004) The dynamics of the marine nitrogen cycle and its influence on atmospheric co2 variations. In: Follows M, Oguz T (eds) The ocean carbon cycle and climate, Springer, Netherlands, p. 97–148Google Scholar
  20. Gruber N, Sarmiento JL (1997) Global patterns of marine nitrogen fixation and denitrification. Global Biogeochem Cycles 11:235–266. doi: 10.1029/97GB00077 CrossRefGoogle Scholar
  21. Hamme RC, Emerson SR (2002) Mechanisms controlling the global oceanic distribution of the inert gases argon, nitrogen and neon. Geophys Res Lett 29, 35-31-35-34. doi: 10.1029/2002GL015273
  22. Hamme RC, Emerson SR (2013) Deep-sea nutrient loss inferred from the marine dissolved N2/Ar ratio. Geophys Res Lett 40:1149–1153. doi: 10.1002/grl.50275 CrossRefGoogle Scholar
  23. Hamme RC, Severinghaus JP (2007) Trace gas disequilibria during deep-water formation. Deep-Sea Res Part I 54:939–950. doi: 10.1016/j.dsr.2007.03.008 CrossRefGoogle Scholar
  24. Hansell DA, Olson DB, Dentener F, Zamora LM (2007) Assessment of excess nitrate development in the subtropical North Atlantic. Mar Chem 106:562–579. doi: 10.1016/j.marchem.2007.06.005 CrossRefGoogle Scholar
  25. Hart M, Sailor D (2009) Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theor Appl Climatol 95:397–406. doi: 10.1007/s00704-008-0017-5 CrossRefGoogle Scholar
  26. Hilborn R, Mangel M (1997) The confrontation: likelihood and maximum likelihood. In: Princeton University Press (ed) the ecological detective: confronting models with data, Princeton University Press, Princeton, p 131–179Google Scholar
  27. Kitani K (1973) An oceanographicstudy of the OkhotskSea: particularly in regard to cold waters. Bull Far Seas Fish Res Lab 9:45–77Google Scholar
  28. Landolfi A, Oschlies A, Sanders R (2008) Organic nutrients and excess nitrogen in the North Atlantic subtropical gyre. Biogeosciences 5:1199–1213. doi: 10.5194/bg-5-1199-2008 CrossRefGoogle Scholar
  29. Lehmann MF, Sigman DM, McCorkle DC, Granger J, Hoffmann S, Cane G, Brunelle BG (2007) The distribution of nitrate 15°N/14°N in marine sediments and the impact of benthic nitrogen loss on the isotopic composition of oceanic nitrate. Geochim Cosmochim Acta 71:5384–5404. doi: 10.1016/j.gca.2007.07.025 CrossRefGoogle Scholar
  30. Liu K-K, Kaplan IR (1984) Denitrification rates and availability of organic matter in marine environments. Earth Planet Sci Lett 68:88–100. doi: 10.1016/0012-821X(84)90142-0 CrossRefGoogle Scholar
  31. Matsuda J, Mitsudera H, Nakamura T, Uchimoto K, Nakanowatari T, Ebuchi N (2009) Wind and buoyancy driven intermediate-layer overturning in the Sea of Okhotsk. Deep-Sea Res Part I 56:1401–1418. doi: 10.1016/j.dsr.2009.04.014 CrossRefGoogle Scholar
  32. Middelburg JJ, Soetaert K, Herman PMJ, Heip CHR (1996) Denitrification in marine sediments: a model study. Global Biogeochem Cycles 10:661–673. doi: 10.1029/96gb02562 CrossRefGoogle Scholar
  33. Monteiro FM, Follows MJ (2012) On nitrogen fixation and preferential remineralization of phosphorus. Geophys Res Lett 39:L06607. doi: 10.1029/2012gl050897 CrossRefGoogle Scholar
  34. Nakatsuka T, Yoshikawa C, Toda M, Kawamura K, Wakatsuchi M (2002) An extremely turbid intermediate water in the Sea of Okhotsk: implication for the transport of particulate organic matter in a seasonally ice-bound sea. Geophys Res Lett 29, 4-1-4-4. doi: 10.1029/2001gl014029
  35. Nakatsuka T, Toda M, Kawamura K, Wakatsuchi M (2004) Dissolved and particulate organic carbon in the Sea of Okhotsk: Transport from continental shelf to ocean interior. J Geophys Res 109, C09S14. doi: 10.1029/2003jc001909
  36. Ohshima KI, Wakatsuchi M, Fukamachi Y, Mizuta G (2002) Near-surface circulation and tidal currents of the Okhotsk Sea observed with satellite-tracked drifters. J Geophys Res 107, 16-11-16-18. doi: 10.1029/2001jc001005
  37. Rawlings JO, Pantula SG, Dickey DA (1998) Applied Regression Analysis: A Research Tool. Springer, CACrossRefGoogle Scholar
  38. Sabine C, Feely R, Watanabe Y, Lamb M (2004) Temporal Evolution of the North Pacific CO2 uptake rate. J Oceanogr 60:5–15. doi: 10.1023/ CrossRefGoogle Scholar
  39. Saitoh S, Kishino M, Kiyofuji H, Taguchi S, Takahashi M (1996) Seasonal Variability of Phytoplankton Pigment Concentration in the Okhotsk Sea. J Remote Sens Soc Jpn 16:172–178. doi: 10.11440/rssj1981.16.172 Google Scholar
  40. Schlitzer R. (2001) Ocean Data View. Available at:
  41. Shigemitsu M, Watanabe Y, Yamanaka Y, Kawakami H, Honda M (2010) Relationship between sinking organic matter and minerals in the shallow zone of the western Subarctic Pacific. J Oceanogr 66:697–708. doi: 10.1007/s10872-010-0057-1 CrossRefGoogle Scholar
  42. Shigemitsu M, Gruber N, Oka A, Tanaka SS, Yamanaka Y (2013a) Potential use of \({\text{N}}_{2}^{*}\) as a constraint on the oceanic fixed nitrogen budget. In: The oceanographic Society of Japan, Fall meeting in 2013, Sapporo, Sept. 17–21, p 208Google Scholar
  43. Shigemitsu M, Nishioka J, Watanabe YW, Yamanaka Y, Nakatsuka T, Volkov YN (2013b) Fe/Al ratios of suspended particulate matter from intermediate water in the Okhotsk Sea: implications for long-distance lateral transport of particulate Fe. Mar Chem 157:41–48. doi: 10.1016/j.marchem.2013.07.003 CrossRefGoogle Scholar
  44. Shimono Y, Kudo G (2003) Intraspecific variations in seedling emergence and survival of potentilla matsumurae (rosaceae) between alpine fellfield and snowbed habitats. Ann Bot 91:21–29. doi: 10.1093/aob/mcg002 CrossRefGoogle Scholar
  45. Sorokin YI, Sorokin PY (1999) Production in the Sea of Okhotsk. J Plankton Res 21:201–230. doi: 10.1093/plankt/21.2.201 CrossRefGoogle Scholar
  46. Sundby B, Gobeil C, Silverberg N, Mucci A (1992) The phosphorus cycle in coastal marine sediments. Limnol Oceanogr 37:1129–1145CrossRefGoogle Scholar
  47. Tanaka SS, Watanabe YW (2007) A high accuracy method for determining nitrogen, argon and oxygen in seawater. Mar Chem 106:516–529. doi: 10.1016/j.marchem.2007.05.005 CrossRefGoogle Scholar
  48. Thibodeau B, Lehmann MF, Kowarzyk J, Mucci A, Gélinas Y, Gilbert D, Maranger R, Alkhatib M (2010) Benthic nutrient fluxes along the Laurentian Channel: impacts on the N budget of the St. Lawrence marine system. Estuar Coast Shelf Sci 90:195–205. doi: 10.1016/j.ecss.2010.08.015 CrossRefGoogle Scholar
  49. Van Sickle J (2013) Estimating the risks of multiple, covarying stressors in the National Lakes Assessment. Freshw Sci 32:204–216. doi: 10.1899/11-050.1 CrossRefGoogle Scholar
  50. Wakita M, Watanabe YW, Watanabe S, Noriki S, Wakatsuchi M (2003) Oceanic uptake rate of anthropogenic CO2 in a subpolar marginal sea: the Sea of Okhotsk. Geophys Res Lett 30:2252. doi: 10.1029/2003gl018057 CrossRefGoogle Scholar
  51. Wakita M, Watanabe S, Watanabe YW, Ono T, Tsurushima N, Tsunogai S (2005) Temporal change of dissolved inorganic carbon in the subsurface water at Station KNOT (44°N, 155°E) in the western North Pacific subpolar region. J Oceanogr 61:129–139. doi: 10.1007/s10872-005-0026-2 CrossRefGoogle Scholar
  52. Watanabe YW, Ono T, Shimamo A, Sugimoto T, Wakita M, Watanabe S (2001) Probability of a reduction in the formation rate of the subsurface water in the North Pacific during the 1980s and 1990s. Geophys Res Lett 28:3289–3292CrossRefGoogle Scholar
  53. Weber TS, Deutsch C (2010) Ocean nutrient ratios governed by plankton biogeography. Nature 467:550–554. doi: 10.1038/nature09403 CrossRefGoogle Scholar
  54. Yamamoto M, Watanabe S, Tsunogai S, Wakatsuchi M (2002) Effects of sea ice formation and diapycnal mixing on the Okhotsk Sea intermediate water clarified with oxygen isotopes. Deep-Sea Res Part I 49:1165–1174. doi: 10.1016/S0967-0637(02)00032-8 CrossRefGoogle Scholar
  55. Yamamoto-Kawai M, Watanabe S, Tsunogai S, Wakatsuchi M (2004) Chlorofluorocarbons in the Sea of Okhotsk: ventilation of the intermediate water. J Geophys Res 109, C09S11. doi: 10.1029/2003JC001919
  56. Yasuda I (1997) The origin of the North Pacific Intermediate Water. J Geophys Res 102:893–909. doi: 10.1029/96JC02938 CrossRefGoogle Scholar
  57. Yoshikawa C, Nakatsuka T, Wakatsuchi M (2006) Distribution of N* in the Sea of Okhotsk and its use as a biogeochemical tracer of the Okhotsk Sea Intermediate Water formation process. J Mar Syst 63:49–62. doi: 10.1016/j.jmarsys.2006.05.008 CrossRefGoogle Scholar
  58. Yoshikawa C, Coles VJ, Hood RR, Capone DG, Yoshida N (2013) Modeling how surface nitrogen fixation influences subsurface nutrient patterns in the North Atlantic. J Geophys Res 118:2520–2534. doi: 10.1002/jgrc.20165 CrossRefGoogle Scholar
  59. Zamora LM, Landolfi A, Oschlies A, Hansell D, Dietze H, Dentener F (2009) Atmospheric deposition of nutrients and excess N formation in the North Atlantic. Biogeosciences 6:9849–9889. doi: 10.5194/bgd-6-9849-2009 CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan 2014

Authors and Affiliations

  • Masanori Ito
    • 1
  • Yutaka W. Watanabe
    • 1
    • 2
  • Masahito Shigemitsu
    • 2
  • Shinichi S. Tanaka
    • 3
  • Jun Nishioka
    • 4
  1. 1.Graduate School of Environmental ScienceHokkaido UniversitySapporoJapan
  2. 2.Faculty of Earth Environmental ScienceHokkaido UniversitySapporoJapan
  3. 3.Earthquake Research InstituteThe University of TokyoTokyoJapan
  4. 4.Institute of Low Temperature ScienceHokkaido UniversitySapporoJapan

Personalised recommendations