Journal of Oceanography

, Volume 69, Issue 5, pp 527–544 | Cite as

Modeling the long-term variability of phytoplankton functional groups and primary productivity in the South China Sea

  • Wentao Ma
  • Fei Chai
  • Peng Xiu
  • Huijie Xue
  • Jun Tian
Original Article


Primary productivity (PP) and phytoplankton structure play an important role in regulating oceanic carbon cycle. The unique seasonal circulation and upwelling pattern of the South China Sea (SCS) provide an ideal natural laboratory to study the response of nutrients and phytoplankton dynamics to climate variation. In this study, we used a three-dimensional (3D) physical–biogeochemical coupled model to simulate nutrients, phytoplankton biomass, PP, and functional groups in the SCS from 1958 to 2009. The modeled results showed that the annual mean carbon composition of small phytoplankton, diatoms, and coccolithophores was 33.7, 52.7, and 13.6 %, respectively. Diatoms showed a higher seasonal variability than small phytoplankton and coccolithophores. Diatoms were abundant during winter in most areas of the SCS except for the offshore of southeastern Vietnam, where diatom blooms occurred in both summer and winter. Higher values of small phytoplankton and coccolithophores occurred mostly in summer. Our modeled results indicated that the seasonal variability of PP was driven by the East Asian Monsoon. The northeast winter monsoon results in more nutrients in the offshore area of the northwestern Luzon Island and the Sunda Shelf, while the southwest summer monsoon drives coastal upwelling to bring sufficient nutrients to the offshore area of southeastern Vietnam. The modeled PP was correlated with El Niño/Southern Oscillation (ENSO) at the interannual scale. The positive phase of ENSO (El Niño conditions) corresponded to lower PP and the negative phase of ENSO (La Niña conditions) corresponded to higher PP.


Phytoplankton functional groups Primary productivity Nutrient dynamics East Asian Monsoon ENSO South China Sea ROMS–CoSiNE model 



Funding for this research was provided by the NSFC (Grant No. 41206033, 91128208 40976024). This research was also sponsored by Shanghai Shuguang Program (11SG24) and program for New Century Excellent Talents in University (NCET-08-0401). The computation is facilitated by the University of Maine High Performance Computing Center. We are grateful to the two anonymous reviewers for their constructive comments.


  1. Behrenfeld MJ, Boss E, Siegel DA, Shea DM (2005) Carbon-based ocean productivity and phytoplankton physiology from space. Glob Biogeochem Cycles 19:GB1006. doi: 10.1029/2004GB002299 CrossRefGoogle Scholar
  2. Cai WJ, Dai M, Wang Y, Zhai W, Huang T, Chen S, Zhang F, Chen Z, Wang Z (2004) The biogeochemistry of inorganic carbon and nutrients in the Pearl River estuary and the adjacent Northern South China Sea. Cont Shelf Res 24(12):1301–1319. doi: 10.1016/j.csr.2004.04.005 CrossRefGoogle Scholar
  3. Cermeño P, Dutkiewicz S, Harris RP, Follows M, Schofield O, Falkowski PG (2008) The role of nutricline depth in regulating the ocean carbon cycle. Proc Natl Acad Sci USA 105(51):20344–20349. doi: 10.1073/pnas.0811302106 CrossRefGoogle Scholar
  4. Chai F, Dugdale RC, Peng TH, Wilkerson FP, Barber RT (2002) One-dimensional ecosystem model of the equatorial Pacific upwelling system. Part I: model development and silicon and nitrogen cycle. Deep Sea Res Pt II 49(12–13):2713–2745. doi: 10.1016/s0967-0645(02)00055-3 CrossRefGoogle Scholar
  5. Chai F, Liu G, Xue H, Shi L, Chao Y, Tseng CM, Chou WC, Liu KK (2009) Seasonal and interannual variability of carbon cycle in South China Sea: A three-dimensional physical-biogeochemical modeling study. J Oceanogr 65(5):703–720. doi: 10.1007/s10872-009-0061-5 CrossRefGoogle Scholar
  6. Chao SY, Shaw PT, Wu SY (1996) Deep water ventilation in the South China Sea. Deep Sea Res Pt I 43(4):445–466. doi: 10.1016/0967-0637(96)00025-8 CrossRefGoogle Scholar
  7. Chen J (2005) Biogeochemistry of settling particles in the South China Sea and its significance on paleo-environment studies. Dissertation, Tongji University, ShanghaiGoogle Scholar
  8. Chen CT, Wang SL, Wang BJ, Pai SC (2001) Nutrient budgets for the South China Sea basin. Mar Chem 75(4):281–300. doi: 10.1016/s0304-4203(01)00041-x CrossRefGoogle Scholar
  9. Chen R, Wiesner MG, Zheng YL, Cheng XR, Jin HY, Zhao QY, Zheng LF (2007a) Seasonal and annual variations of marine sinking particulate flux during 1993–1996 in the central South China Sea. Acta Oceanolog Sin 26(3):33–43Google Scholar
  10. Chen YLL, Chen HY, Chung CW (2007b) Seasonal variability of coccolithophore abundance and assemblage in the northern South China Sea. Deep Sea Res Pt II 54(14–15):1617–1633. doi: 10.1016/j.dsr2.2007.05.005 CrossRefGoogle Scholar
  11. Dugdale RC (1967) Nutrient limitation in the sea: dynamics, identification, and significance. Limnol Oceanogr 12(4):685–695CrossRefGoogle Scholar
  12. Dugdale RC, Barber RT, Chai F, Peng TH, Wilkerson FP (2002) One-dimensional ecosystem model of the equatorial Pacific upwelling system. Part II: sensitivity analysis and comparison with JGOFS EqPac data. Deep Sea Res Pt II 49(13–14):2747–2768. doi: 10.1016/s0967-0645(02)00056-5 CrossRefGoogle Scholar
  13. DuRand MD, Olson RJ, Chisholm SW (2001) Phytoplankton population dynamics at the Bermuda Atlantic Time-series station in the Sargasso Sea. Deep Sea Res Pt II 48(8–9):1983–2003. doi: 10.1016/s0967-0645(00)00166-1 CrossRefGoogle Scholar
  14. Eppley RW, Peterson BJ (1979) Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282(5740):677–680. doi: 10.1038/282677a0 CrossRefGoogle Scholar
  15. Eppley RW, Chavez FP, Barber RT (1992) Standing stocks of particulate carbon and nitrogen in the equatorial Pacific at 150°W. J Geophys Res 97(C1):655–661. doi: 10.1029/91JC01386 CrossRefGoogle Scholar
  16. Fujii M, Chai F (2007) Modeling carbon and silicon cycling in the equatorial Pacific. Deep Sea Res Pt II 54(5–7):496–520. doi: 10.1016/j.dsr2.2006.12.005 CrossRefGoogle Scholar
  17. Fujii M, Boss E, Chai F (2007) The value of adding optics to ecosystem models: a case study. Biogeosciences 4(5):817–835. doi: 10.5194/bg-4-817-2007 CrossRefGoogle Scholar
  18. Garcia HE, Locarnini RA, Boyer TP, Antonov JI, Zweng MM, Baranova OK, Johnson DR (2010) Nutrients (phosphate, nitrate, silicate). In: Levitus S (ed) World Ocean Atlas 2009. NOAA Atlas NESDIS 71. US Government Printing Office, Washington, D.C.Google Scholar
  19. Han A, Dai M, Kao S-J, Gan J, Li Q, Wang L, Zhai W, Wang L (2012) Nutrient dynamics and biological consumption in a large continental shelf system under the influence of both a river plume and coastal upwelling. Limnol Oceanogr 57(2):486–502. doi: 10.4319/lo.2012.57.2.0486 CrossRefGoogle Scholar
  20. Hense I, Beckmann A (2008) Revisiting subsurface chlorophyll and phytoplankton distributions. Deep Sea Res Pt I 55(9):1193–1199. doi: 10.1016/j.dsr.2008.04.009 CrossRefGoogle Scholar
  21. Iglesias-Rodríguez MD, Brown CW, Doney SC, Kleypas J, Kolber D, Kolber Z, Hayes PK, Falkowski PG (2002) Representing key phytoplankton functional groups in ocean carbon cycle models: coccolithophorids. Glob Biogeochem Cycles 16(4):1100. doi: 10.1029/2001GB001454 CrossRefGoogle Scholar
  22. Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471CrossRefGoogle Scholar
  23. Kuo NJ, Zheng Q, Ho CR (2000) Satellite observation of upwelling along the western coast of the South China Sea. Remote Sens Environ 74(3):463–470. doi: 10.1016/s0034-4257(00)00138-3 CrossRefGoogle Scholar
  24. Lahajnar N, Wiesner MG, Gaye B (2007) Fluxes of amino acids and hexosamines to the deep South China Sea. Deep Sea Res Pt I 54(12):2120–2144. doi: 10.1016/j.dsr.2007.08.009 CrossRefGoogle Scholar
  25. Lan J, Wang Y, Bao Y (2012) Response of the South China Sea upper layer circulation to monsoon anomalies during 1997/1998 El Nino event. Aquat Ecosyst Health Manag 15(1):6–13. doi: 10.1080/14634988.2012.645750 CrossRefGoogle Scholar
  26. Li JX, Zhang R, Jin BG (2011) Eddy characteristics in the northern South China Sea as inferred from Lagrangian drifter data. Ocean Sci 7(5):661–669. doi: 10.5194/os-7-661-2011 CrossRefGoogle Scholar
  27. Litchman E, Klausmeier CA, Schofield OM, Falkowski PG (2007) The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecol Lett 10(12):1170–1181. doi: 10.1111/j.1461-0248.2007.01117.x CrossRefGoogle Scholar
  28. Liu G, Chai F (2009) Seasonal and interannual variability of primary and export production in the South China Sea: a three-dimensional physical–biogeochemical model study. ICES J Mar Sci 66(2):420–431. doi: 10.1093/icesjms/fsn219 CrossRefGoogle Scholar
  29. Liu KK, Chao SY, Shaw PT, Gong GC, Chen CC, Tang TY (2002) Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study. Deep Sea Res Pt I 49(8):1387–1412. doi: 10.1016/s0967-0637(02)00035-3 CrossRefGoogle Scholar
  30. Liu QY, Jiang X, Xie SP, Liu WT (2004) A gap in the Indo-Pacific warm pool over the South China Sea in boreal winter: seasonal development and interannual variability. J Geophys Res 109:C07012. doi: 10.1029/2003JC002179 CrossRefGoogle Scholar
  31. Liu H, Chang J, Tseng CM, Wen LS, Liu KK (2007a) Seasonal variability of picoplankton in the Northern South China Sea at the SEATS station. Deep Sea Res Pt II 54(14–15):1602–1616. doi: 10.1016/j.dsr2.2007.05.004 CrossRefGoogle Scholar
  32. Liu KK, Chen YJ, Tseng CM, Lin II, Liu HB, Snidvongs A (2007b) The significance of phytoplankton photo-adaptation and benthic–pelagic coupling to primary production in the South China Sea: observations and numerical investigations. Deep Sea Res Pt II 54(14–15):1546–1574. doi: 10.1016/j.dsr2.2007.05.009 CrossRefGoogle Scholar
  33. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE (2006), World Ocean Atlas 2005, vol 1: temperature. In: Levitus S (ed) NOAA Atlas NESDIS 61. US Government Printing Office, Washington, D.C.Google Scholar
  34. Maranon E, Holligan PM, Barciela R, Gonzalez N, Mourino B, Pazo MJ, Varela M (2001) Patterns of phytoplankton size structure and productivity in contrasting open-ocean environments. Mar Ecol Prog Ser 216:43–56. doi: 10.3354/meps216043 CrossRefGoogle Scholar
  35. Margalef R (1978) Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol Acta 1(4):493–509Google Scholar
  36. Metzger EJ, Hurlburt HE (1996) Coupled dynamics of the South China Sea, the Sulu Sea, and the Pacific Ocean. J Geophys Res 101(C5):12331–12352. doi: 10.1029/95JC03861 CrossRefGoogle Scholar
  37. Ning X, Chai F, Xue H, Cai Y, Liu C, Shi J (2004) Physical-biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea. J Geophys Res 109:C10005. doi: 10.1029/2004JC002365 CrossRefGoogle Scholar
  38. Ning X, Lin C, Hao Q, Liu C, Le F, Shi J (2009) Long term changes in the ecosystem in the northern South China Sea during 1976–2004. Biogeosciences 6(10):2227–2243. doi: 10.5194/bg-6-2227-2009 CrossRefGoogle Scholar
  39. Palacz AP, Xue HJ, Armbrecht C, Zhang CY, Chai F (2011) Seasonal and inter-annual changes in the surface chlorophyll of the South China Sea. J Geophys Res 116:C09015. doi: 10.1029/2011JC007064 CrossRefGoogle Scholar
  40. Perez V, Fernandez E, Maranon E, Moran XAG, Zubkovc MV (2006) Vertical distribution of phytoplankton biomass, production and growth in the Atlantic subtropical gyres. Deep Sea Res Pt I 53(10):1616–1634. doi: 10.1016/j.dsr.2006.07.008 CrossRefGoogle Scholar
  41. Qu T, Song YT, Yamagata T (2009) An introduction to the South China Sea throughflow: its dynamics, variability, and application for climate. Dyn Atmos Oceans 47(1–3):3–14. doi: 10.1016/j.dynatmoce.2008.05.001 CrossRefGoogle Scholar
  42. Radenac MH, Rodier M (1996) Nitrate and chlorophyll distributions in relation to thermohaline and current structures in the western tropical Pacific during 1985–1989. Deep Sea Res Pt II 43(4–6):725–752. doi: 10.1016/0967-0645(96)00025-2 CrossRefGoogle Scholar
  43. Ran L, Zheng Y, Chen J, Chen R, Zheng L, Wiesner M (2011) The influence of monsoon on seasonal changes of diatom fluxes in the northern and central South China Sea. Acta Oceanolog Sin 33:139–145 (in Chinese with English abstract)Google Scholar
  44. Shang S, Lee Z, Wei G (2011) Characterization of MODIS-derived euphotic zone depth: results for the China Sea. Remote Sens Environ 115(1):180–186. doi: 10.1016/j.rse.2010.08.016 CrossRefGoogle Scholar
  45. Shaw PT, Chao SY, Liu KK, Pai SC, Liu CT (1996) Winter upwelling off Luzon in the northeastern South China Sea. J Geophys Res 101(C7):16435–16448. doi: 10.1029/96jc01064 CrossRefGoogle Scholar
  46. Su J (2004) Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary. Cont Shelf Res 24(16):1745–1760. doi: 10.1016/j.csr.2004.06.005 CrossRefGoogle Scholar
  47. Tseng CM, Wong GTF, Lin II, Wu CR, Liu KK (2005) A unique seasonal pattern in phytoplankton biomass in low-latitude waters in the South China Sea. Geophys Res Lett 32:L08608. doi: 10.1029/2004GL022111 CrossRefGoogle Scholar
  48. Wan S, Jian ZM, Cheng XR, Qiao PJ, Wang RJ (2010) Seasonal variations in planktonic foraminiferal flux and the chemical properties of their shells in the southern South China Sea. Sci China Earth Sci 53(8):1176–1187CrossRefGoogle Scholar
  49. Wang X, Chao Y (2004) Simulated sea surface salinity variability in the tropical Pacific. Geophys Res Lett 31:L02302. doi: 10.1029/2003GL018146 CrossRefGoogle Scholar
  50. Wang P, Li Q (2009) The South China Sea: paleoceanography and sedimentology. Springer, New York, p 506CrossRefGoogle Scholar
  51. Wang R, Lin J, Zheng L, Chen R, Chen J (2000) Siliceous microplankton fluxes and seasonal variations in the central South China Sea during 1993–1995: monsoon climate and El Niño responses. Chin Sci Bull 45(23):2168–2172. doi: 10.1007/bf02886323 CrossRefGoogle Scholar
  52. Wang J, Tang D, Sui Y (2010) Winter phytoplankton bloom induced by subsurface upwelling and mixed layer entrainment southwest of Luzon Strait. J Mar Syst 83(3–4):141–149. doi: 10.1016/j.jmarsys.2010.05.006 CrossRefGoogle Scholar
  53. Wang G, Xie SP, Qu T, Huang RX (2011) Deep South China Sea circulation. Geophys Res Lett 38:L05601. doi: 10.1029/2010GL046626 Google Scholar
  54. Wei CL, Lin SY, Sheu DD, Chou WC, Yi MC, Santschi PH, Wen LS (2011) Particle-reactive radionuclides (234Th, 210Pb, 210Po) as tracers for the estimation of export production in the South China Sea. Biogeosciences 8(12):3793–3808. doi: 10.5194/bg-8-3793-2011 CrossRefGoogle Scholar
  55. Wong GTF, Ku TL, Mulholland M, Tseng CM, Wang DP (2007a) The South-East Asian Time-series Study (SEATS) and the biogeochemistry of the South China Sea—an overview. Deep Sea Res Pt II 54(14–15):1434–1447. doi: 10.1016/j.dsr2.2007.05.012 CrossRefGoogle Scholar
  56. Wong GTF, Tseng CM, Wen LS, Chung SW (2007b) Nutrient dynamics and N-anomaly at the SEATS station. Deep Sea Res Pt II 54(14–15):1528–1545. doi: 10.1016/j.dsr2.2007.05.011 CrossRefGoogle Scholar
  57. Xie SP, Xie Q, Wang D, Liu WT (2003) Summer upwelling in the South China Sea and its role in regional climate variations. J Geophys Res 108(C8):3261. doi: 10.1029/2003JC001867 CrossRefGoogle Scholar
  58. Xie SP, Hu KM, Hafner J, Tokinaga H, Du Y, Huang G, Sampe T (2009) Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J Climate 22(3):730–747. doi: 10.1175/2008JCLI2544.1 CrossRefGoogle Scholar
  59. Xiu P, Chai F (2011) Modeled biogeochemical responses to mesoscale eddies in the South China Sea. J Geophys Res 116:C10006. doi: 10.1029/2010JC006800 CrossRefGoogle Scholar
  60. Xiu P, Chai F (2012) Spatial and temporal variability in phytoplankton carbon, chlorophyll, and nitrogen in the North Pacific. J Geophys Res 117:C11023. doi: 10.1029/2012JC008067 CrossRefGoogle Scholar
  61. Xiu P, Chai F, Shi L, Xue H, Chao Y (2010) A census of eddy activities in the South China Sea during 1993–2007. J Geophys Res 115:C03012. doi: 10.1029/2009JC005657 CrossRefGoogle Scholar
  62. Xue H, Chai F, Pettigrew N, Xu D, Shi M, Xu J (2004) Kuroshio intrusion and the circulation in the South China Sea. J Geophys Res 109:C02017. doi: 10.1029/2002JC001724 CrossRefGoogle Scholar
  63. Zhao H, Tang DL (2007) Effect of 1998 El Niño on the distribution of phytoplankton in the South China Sea. J Geophys Res 112:C02017. doi: 10.1029/2006JC003536 CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan 2013

Authors and Affiliations

  • Wentao Ma
    • 1
    • 3
  • Fei Chai
    • 2
  • Peng Xiu
    • 2
  • Huijie Xue
    • 2
  • Jun Tian
    • 1
  1. 1.State Key Laboratory of Marine GeologyTongji UniversityShanghaiChina
  2. 2.School of Marine SciencesThe University of MaineOronoUSA
  3. 3.College of Environmental Science and EngineeringTongji UniversityShanghaiChina

Personalised recommendations