Skip to main content
Log in

Effects of the copepod community structure on fecal pellet flux in Kagoshima bay, a deep, semi-enclosed embayment

  • Original Articles
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Seasonal changes in the shape and size composition of fecal pellets were investigated with sediment trap samples from 50 and 150 m in Kagoshima Bay to evaluate how the mesozooplankton community affects fecal pellet flux. Deep vertical mixing was evident in March, and thermal stratification was developed above 50 m in June, August and November. Chlorophyll a, suspended particulate organic carbon (POC) and copepod abundance were uniform throughout the water column during the seasonal mixing and concentrated above 50 m in the stratified seasons. Calanoids were the most predominant copepods in March and poecilostomatoids composed more than 45% of the copepod community in June, August and November. Fecal pellet fluxes at 50 and 150 m were the highest in March, nearly half of POC flux. The relative contribution declined considerably in the other months, especially for less than 4% of POC flux in August. The decline was corresponded to the predominance of cyclopoids and poecilostomatoids. Cylindrical pellets dominated the fecal matters at both depths throughout the study period, while larger cylindrical pellets nearly disappeared at 150 m in June, August and November. Copepod incubation revealed that cylindrical and oval pellets were egested by calanoids and the other copepods, respectively. We suggest that cylindrical fecal pellets produced by calanoid copepods contribute to feces flux but the predominance of poecilostomatoids and/or cyclopoids decreases feces flux via the increase of oval pellets and fragmentation of larger cylindrical pellets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aramaki, T., Y. Nojiri and K. Imai (2009): Behavior of particulate materials during iron fertilization experiments in the western subarctic Pacific (SEEDS and SEEDSII). Deep-Sea Res. II, 56, 2875–2888.

    Article  Google Scholar 

  • Arístegui, J., C. M. Duarte, S. Agusti, M. X. A. Doval, X. A. Alvarez-Salgado and D. A. Hansell (2002): Dissolved organic carbon support of respiration in the dark ocean. Science, 298, 1967.

    Article  Google Scholar 

  • Bishop, J. K., J. M. Edmond, D. R. Ketten, M. P. Bacon and W. B. Silker (1977): The chemistry, biology, and vertical flux of particulate matter from the upper 400 m of the equatorial Atlantic Ocean. Deep-Sea Res., 24, 511–548.

    Article  Google Scholar 

  • Böttger-Schnack, R. (1990): Community structure and vertical distribution of cyclopoid copepods in the Red Sea I. Central Red Sea, autumn 1980. Mar. Biol., 106, 473–485.

    Article  Google Scholar 

  • Buesseler, K. O., J. Bishop, P. Boyd, F. Dehairs, P. Lam, C. Lamborg, M. Honda, D. M. Karl, D. Siegel, M. Silver, D. Steinberg, T. Trull, J. Valdes, B. Van-Mooy and S. Wilson (2007): Ocean carbon flux through the twilight zone. Science, 316, 567–570.

    Article  Google Scholar 

  • Carroll, M. L., J.-C. Miquel and S. W. Fowler (1998): Seasonal patterns and depth-specific trends of zooplankton fecal pellet fluxes in the northwestern Mediterranean Sea. Deep-Sea Res. I, 45, 1303–1318.

    Article  Google Scholar 

  • Chihara, M. and M. Murano (1997): An Illustrated Guide to Marine Plankton in Japan. Tokai Univ. Press, Tokyo, 1574 pp.

    Google Scholar 

  • Dagg, M. J., J. Urban-Rich and J. O. Peterson (2003): The potential contribution of fecal pellets from large copepods to the flux of biogenic silica and particulate organic carbon in the Antarctic Polar Front region near 170°W. Deep-Sea Res. II, 50, 675–691.

    Article  Google Scholar 

  • Flower, S. W. and G. A. Knauer (1986): Role of large particles in the transport of elements and organic compounds through the oceanic water column. Prog. Oceanogr., 16, 147–194.

    Article  Google Scholar 

  • González, H. E. and V. Smetacek (1994): The possible role of the cyclopoid copepod Oithona in retarding vertical flux of zooplankton fecal material. Mar. Ecol. Prog. Ser., 113, 233–246.

    Article  Google Scholar 

  • Honjo, S. and M. R. Roman (1978): Marine copepod fecal pellets: production, preservation and sedimentation. J. Mar. Res., 36, 45–57.

    Google Scholar 

  • Huskin, I., L. Viesca and R. Anadón (2004): Particle flux in the subtropical Atlantic near the Azores: Influence of mesozooplankton. J. Plankton Res., 26, 403–415.

    Article  Google Scholar 

  • Ichikawa, T., N. Honda and K. Matsunaga (1999): Marine snow in Kagoshima Bay. Bull. Mar. Biomed. Inst., Sapporo Med. Univ., 4, 37–42.

    Google Scholar 

  • Iversen, M. H. and L. K. Poulsen (2007): Coprorhexy, coprophagy, and coprochaly in the copepods Calanus helgolandicus, Pseudocalanus elongates, and Oithona similis. Mar. Ecol. Prog. Ser., 350, 79–89.

    Article  Google Scholar 

  • Iversen, M. H., N. Nowald, H. Ploug, G. A. Jackson and G. Fischer (2010): High resolution profiles of vertical particulate organic matter export off Cape Blanc, Mauritania: Degradation processes and ballasting effects. Deep-Sea Res. I, 57, 771–784.

    Article  Google Scholar 

  • Kobari, T., A. Habano and T. Ichikawa (2002): Seasonal variations in phyto- and zooplankton biomass in Kagoshima Bay. Mem. Fac. Fish., Kagoshima Univ., 51, 19–25.

    Google Scholar 

  • Kobari, T., Y. Kobari, T. Ichikawa, Y. Kugita, T. Yoshida, T. Fujii, S. Furuhashi, T. Yamamoto, A. Habano and R. Fukuda (2009): Seasonal dynamics of microbial plankton community in Kagoshima Bay. Aquabiology, 31, 37–44 (in Japanese with English abstract).

    Google Scholar 

  • Lampitt, R. S., T. T. Noji and B. von Bodungen (1990): What happens to zooplankton faecal pellets? Implications for material flux. Mar. Biol., 104, 15–23.

    Article  Google Scholar 

  • Martens, P. (1978): Faecal pellets. Fich. Ident. Zooplancton, 162, 1–4.

    Google Scholar 

  • Martin, J. H., G. A. Knauer, D. M. Karl and W. W. Broenkow (1987): VERTEX: carbon cycling in the NE Pacific. Deep-Sea Res., 34, 267–285.

    Article  Google Scholar 

  • Motoda, S. (1957): North Pacific standard plankton net. Inform. Bull. Plankt. Japan, 4, 13–15.

    Google Scholar 

  • Noji, T. T., K. W. Estep, F. MacIntyre and F. Norrbin (1991): Image analysis of faecal material grazed upon by three species of copepods: evidence for coprohexy, coprophagy, and coprochaly. J. Mar. Biol. Ass. U.K., 71, 465–480.

    Article  Google Scholar 

  • Nozawa, K. and T. Saisyo (1980): Plankton in Kagoshima Bay. Kaiyo Monthly, 12, 654–672 (in Japanese).

    Google Scholar 

  • Pace, M. L., G. A. Knauer, D. M. Karl and J. H. Martin (1987): Primary production, new production and vertical flux in the eastern Pacific Ocean. Nature, 325, 802–804.

    Article  Google Scholar 

  • Paffenhöfer, G.-A. and S. A. Knowles (1979): Ecological implications of fecal pellet size, production and consumption by copepods. J. Mar. Res., 37, 35–49.

    Google Scholar 

  • Paffenhöfer, G.-A. and J. D. H. Strickland (1970): A note on the feeding of Calanus helgolandicus on detritus. Mar. Biol., 5, 97–99.

    Article  Google Scholar 

  • Poulsen, L. K. and M. H. Iversen (2008): Degradation of copepod fecal pellets: key role of protozooplankton. Mar. Ecol. Prog. Ser., 367, 1–13.

    Article  Google Scholar 

  • Poulsen, L. K. and T. Kiørboe (2006): Vertical flux and degradation rates of copepod fecal pellets in a zooplankton community dominated by small copepods. Mar. Ecol. Prog. Ser., 323, 195–204.

    Article  Google Scholar 

  • Reigstad, M., C. W. Riser and C. Svensen (2005): Fate of copepod faecal pellets and the role of Oithona spp. Mar. Ecol. Prog. Ser., 304, 265–270.

    Article  Google Scholar 

  • Silver, M. W. and M. M. Gowing (1991): The “particle” flux: origins and biological components. Oceanography, 26, 75–113.

    Article  Google Scholar 

  • Steinberg, D. K., J. S. Cope, S. E. Wilson and T. Kobari (2008): A comparison of mesopelagic mesozooplankton community structure in the subtropical and subarctic North Pacific Ocean. Deep-Sea Res. II, 55, 1615–1635.

    Article  Google Scholar 

  • Suess, E. (1980): Particulate organic carbon flux in the oceansurface productivity and oxygen. Nature, 288, 260–263.

    Article  Google Scholar 

  • Suzuki, H., H. Sasaki and M. Fukuchi (2003): Loss processes of sinking fecal pellets of zooplankton in the mesopelagic layers of the Antarctic marginal ice zone. J. Oceanogr., 59, 809–818.

    Article  Google Scholar 

  • Suzuki, R. and T. Ishimaru (1990): An improved method for the determination of phytoplankton chlorophyll using N, N-dimethylformamide. J. Oceanogr. Soc. Japan, 46, 190–194.

    Article  Google Scholar 

  • Svensen, C. and J. C. Nejstgaard (2003): Is sedimentation of copepod faecal pellets determined by cyclopoids? Evidence from enclosed ecosystems. J. Plankton Res., 25, 917–926.

    Article  Google Scholar 

  • Terazaki, M. and C. Tomatsu (1998): A vertical multiple opening and closing plankton sampler. J. Adv. Mar. Sci. Tech. Soc., 3, 127–132.

    Google Scholar 

  • Turner, J. T. (2002): Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquat. Microb. Ecol., 27, 57–102.

    Article  Google Scholar 

  • Urban-Rich, J., D. A. Hansell and M. R. Roman (1998): Analysis of copepod fecal pellet carbon using a high temperature combustion method. Mar. Ecol. Prog. Ser., 171, 199–208.

    Article  Google Scholar 

  • Uye, S. and K. Kaname (1994): Relations between fecal pellet volume and body size for major zooplankters of the Inland Sea of Japan. J. Oceanogr., 50, 43–49.

    Article  Google Scholar 

  • Uye, S., I. Aoto and T. Onbé (2002): Seasonal population dynamics and production of Microsetella norvegica, a widely distributed but little-studied marine planktonic harpacticoid copepod. J. Plankton Res., 24, 143–153.

    Article  Google Scholar 

  • Welschmeyer, N. A. (1994): Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and phaeopigments. Limnol. Oceanogr., 39, 1985–1992.

    Article  Google Scholar 

  • Wilson, S. E., D. K. Steinberg and K. O. Buesseler (2008): Changes in fecal pellet characteristics with depth as indicators of zooplankton repackaging of particles in the mesopelagic zone of the subtropical and subarctic North Pacific Ocean. Deep-Sea Res. II, 55, 1636–1647.

    Article  Google Scholar 

  • Yoon, W. D., S. K. Kim and K. N. Han (2001): Morphology and sinking velocities of fecal pellets of copepod, molluscan, euphausiid, and salp taxa in the northeastern tropical Atlantic. Mar. Biol., 139, 923–928.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Kobari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobari, T., Akamatsu, H., Minowa, M. et al. Effects of the copepod community structure on fecal pellet flux in Kagoshima bay, a deep, semi-enclosed embayment. J Oceanogr 66, 673–684 (2010). https://doi.org/10.1007/s10872-010-0055-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-010-0055-3

Keywords

Navigation