Journal of Oceanography

, Volume 66, Issue 5, pp 673–684 | Cite as

Effects of the copepod community structure on fecal pellet flux in Kagoshima bay, a deep, semi-enclosed embayment

  • Toru Kobari
  • Hiroyasu Akamatsu
  • Masato Minowa
  • Toshihiro Ichikawa
  • Kazuo Iseki
  • Ryuji Fukuda
  • Masataka Higashi
Original Articles


Seasonal changes in the shape and size composition of fecal pellets were investigated with sediment trap samples from 50 and 150 m in Kagoshima Bay to evaluate how the mesozooplankton community affects fecal pellet flux. Deep vertical mixing was evident in March, and thermal stratification was developed above 50 m in June, August and November. Chlorophyll a, suspended particulate organic carbon (POC) and copepod abundance were uniform throughout the water column during the seasonal mixing and concentrated above 50 m in the stratified seasons. Calanoids were the most predominant copepods in March and poecilostomatoids composed more than 45% of the copepod community in June, August and November. Fecal pellet fluxes at 50 and 150 m were the highest in March, nearly half of POC flux. The relative contribution declined considerably in the other months, especially for less than 4% of POC flux in August. The decline was corresponded to the predominance of cyclopoids and poecilostomatoids. Cylindrical pellets dominated the fecal matters at both depths throughout the study period, while larger cylindrical pellets nearly disappeared at 150 m in June, August and November. Copepod incubation revealed that cylindrical and oval pellets were egested by calanoids and the other copepods, respectively. We suggest that cylindrical fecal pellets produced by calanoid copepods contribute to feces flux but the predominance of poecilostomatoids and/or cyclopoids decreases feces flux via the increase of oval pellets and fragmentation of larger cylindrical pellets.


Particulate organic carbon flux fecal pellet shape size copepods Kagoshima Bay 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aramaki, T., Y. Nojiri and K. Imai (2009): Behavior of particulate materials during iron fertilization experiments in the western subarctic Pacific (SEEDS and SEEDSII). Deep-Sea Res. II, 56, 2875–2888.CrossRefGoogle Scholar
  2. Arístegui, J., C. M. Duarte, S. Agusti, M. X. A. Doval, X. A. Alvarez-Salgado and D. A. Hansell (2002): Dissolved organic carbon support of respiration in the dark ocean. Science, 298, 1967.CrossRefGoogle Scholar
  3. Bishop, J. K., J. M. Edmond, D. R. Ketten, M. P. Bacon and W. B. Silker (1977): The chemistry, biology, and vertical flux of particulate matter from the upper 400 m of the equatorial Atlantic Ocean. Deep-Sea Res., 24, 511–548.CrossRefGoogle Scholar
  4. Böttger-Schnack, R. (1990): Community structure and vertical distribution of cyclopoid copepods in the Red Sea I. Central Red Sea, autumn 1980. Mar. Biol., 106, 473–485.CrossRefGoogle Scholar
  5. Buesseler, K. O., J. Bishop, P. Boyd, F. Dehairs, P. Lam, C. Lamborg, M. Honda, D. M. Karl, D. Siegel, M. Silver, D. Steinberg, T. Trull, J. Valdes, B. Van-Mooy and S. Wilson (2007): Ocean carbon flux through the twilight zone. Science, 316, 567–570.CrossRefGoogle Scholar
  6. Carroll, M. L., J.-C. Miquel and S. W. Fowler (1998): Seasonal patterns and depth-specific trends of zooplankton fecal pellet fluxes in the northwestern Mediterranean Sea. Deep-Sea Res. I, 45, 1303–1318.CrossRefGoogle Scholar
  7. Chihara, M. and M. Murano (1997): An Illustrated Guide to Marine Plankton in Japan. Tokai Univ. Press, Tokyo, 1574 pp.Google Scholar
  8. Dagg, M. J., J. Urban-Rich and J. O. Peterson (2003): The potential contribution of fecal pellets from large copepods to the flux of biogenic silica and particulate organic carbon in the Antarctic Polar Front region near 170°W. Deep-Sea Res. II, 50, 675–691.CrossRefGoogle Scholar
  9. Flower, S. W. and G. A. Knauer (1986): Role of large particles in the transport of elements and organic compounds through the oceanic water column. Prog. Oceanogr., 16, 147–194.CrossRefGoogle Scholar
  10. González, H. E. and V. Smetacek (1994): The possible role of the cyclopoid copepod Oithona in retarding vertical flux of zooplankton fecal material. Mar. Ecol. Prog. Ser., 113, 233–246.CrossRefGoogle Scholar
  11. Honjo, S. and M. R. Roman (1978): Marine copepod fecal pellets: production, preservation and sedimentation. J. Mar. Res., 36, 45–57.Google Scholar
  12. Huskin, I., L. Viesca and R. Anadón (2004): Particle flux in the subtropical Atlantic near the Azores: Influence of mesozooplankton. J. Plankton Res., 26, 403–415.CrossRefGoogle Scholar
  13. Ichikawa, T., N. Honda and K. Matsunaga (1999): Marine snow in Kagoshima Bay. Bull. Mar. Biomed. Inst., Sapporo Med. Univ., 4, 37–42.Google Scholar
  14. Iversen, M. H. and L. K. Poulsen (2007): Coprorhexy, coprophagy, and coprochaly in the copepods Calanus helgolandicus, Pseudocalanus elongates, and Oithona similis. Mar. Ecol. Prog. Ser., 350, 79–89.CrossRefGoogle Scholar
  15. Iversen, M. H., N. Nowald, H. Ploug, G. A. Jackson and G. Fischer (2010): High resolution profiles of vertical particulate organic matter export off Cape Blanc, Mauritania: Degradation processes and ballasting effects. Deep-Sea Res. I, 57, 771–784.CrossRefGoogle Scholar
  16. Kobari, T., A. Habano and T. Ichikawa (2002): Seasonal variations in phyto- and zooplankton biomass in Kagoshima Bay. Mem. Fac. Fish., Kagoshima Univ., 51, 19–25.Google Scholar
  17. Kobari, T., Y. Kobari, T. Ichikawa, Y. Kugita, T. Yoshida, T. Fujii, S. Furuhashi, T. Yamamoto, A. Habano and R. Fukuda (2009): Seasonal dynamics of microbial plankton community in Kagoshima Bay. Aquabiology, 31, 37–44 (in Japanese with English abstract).Google Scholar
  18. Lampitt, R. S., T. T. Noji and B. von Bodungen (1990): What happens to zooplankton faecal pellets? Implications for material flux. Mar. Biol., 104, 15–23.CrossRefGoogle Scholar
  19. Martens, P. (1978): Faecal pellets. Fich. Ident. Zooplancton, 162, 1–4.Google Scholar
  20. Martin, J. H., G. A. Knauer, D. M. Karl and W. W. Broenkow (1987): VERTEX: carbon cycling in the NE Pacific. Deep-Sea Res., 34, 267–285.CrossRefGoogle Scholar
  21. Motoda, S. (1957): North Pacific standard plankton net. Inform. Bull. Plankt. Japan, 4, 13–15.Google Scholar
  22. Noji, T. T., K. W. Estep, F. MacIntyre and F. Norrbin (1991): Image analysis of faecal material grazed upon by three species of copepods: evidence for coprohexy, coprophagy, and coprochaly. J. Mar. Biol. Ass. U.K., 71, 465–480.CrossRefGoogle Scholar
  23. Nozawa, K. and T. Saisyo (1980): Plankton in Kagoshima Bay. Kaiyo Monthly, 12, 654–672 (in Japanese).Google Scholar
  24. Pace, M. L., G. A. Knauer, D. M. Karl and J. H. Martin (1987): Primary production, new production and vertical flux in the eastern Pacific Ocean. Nature, 325, 802–804.CrossRefGoogle Scholar
  25. Paffenhöfer, G.-A. and S. A. Knowles (1979): Ecological implications of fecal pellet size, production and consumption by copepods. J. Mar. Res., 37, 35–49.Google Scholar
  26. Paffenhöfer, G.-A. and J. D. H. Strickland (1970): A note on the feeding of Calanus helgolandicus on detritus. Mar. Biol., 5, 97–99.CrossRefGoogle Scholar
  27. Poulsen, L. K. and M. H. Iversen (2008): Degradation of copepod fecal pellets: key role of protozooplankton. Mar. Ecol. Prog. Ser., 367, 1–13.CrossRefGoogle Scholar
  28. Poulsen, L. K. and T. Kiørboe (2006): Vertical flux and degradation rates of copepod fecal pellets in a zooplankton community dominated by small copepods. Mar. Ecol. Prog. Ser., 323, 195–204.CrossRefGoogle Scholar
  29. Reigstad, M., C. W. Riser and C. Svensen (2005): Fate of copepod faecal pellets and the role of Oithona spp. Mar. Ecol. Prog. Ser., 304, 265–270.CrossRefGoogle Scholar
  30. Silver, M. W. and M. M. Gowing (1991): The “particle” flux: origins and biological components. Oceanography, 26, 75–113.CrossRefGoogle Scholar
  31. Steinberg, D. K., J. S. Cope, S. E. Wilson and T. Kobari (2008): A comparison of mesopelagic mesozooplankton community structure in the subtropical and subarctic North Pacific Ocean. Deep-Sea Res. II, 55, 1615–1635.CrossRefGoogle Scholar
  32. Suess, E. (1980): Particulate organic carbon flux in the oceansurface productivity and oxygen. Nature, 288, 260–263.CrossRefGoogle Scholar
  33. Suzuki, H., H. Sasaki and M. Fukuchi (2003): Loss processes of sinking fecal pellets of zooplankton in the mesopelagic layers of the Antarctic marginal ice zone. J. Oceanogr., 59, 809–818.CrossRefGoogle Scholar
  34. Suzuki, R. and T. Ishimaru (1990): An improved method for the determination of phytoplankton chlorophyll using N, N-dimethylformamide. J. Oceanogr. Soc. Japan, 46, 190–194.CrossRefGoogle Scholar
  35. Svensen, C. and J. C. Nejstgaard (2003): Is sedimentation of copepod faecal pellets determined by cyclopoids? Evidence from enclosed ecosystems. J. Plankton Res., 25, 917–926.CrossRefGoogle Scholar
  36. Terazaki, M. and C. Tomatsu (1998): A vertical multiple opening and closing plankton sampler. J. Adv. Mar. Sci. Tech. Soc., 3, 127–132.Google Scholar
  37. Turner, J. T. (2002): Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquat. Microb. Ecol., 27, 57–102.CrossRefGoogle Scholar
  38. Urban-Rich, J., D. A. Hansell and M. R. Roman (1998): Analysis of copepod fecal pellet carbon using a high temperature combustion method. Mar. Ecol. Prog. Ser., 171, 199–208.CrossRefGoogle Scholar
  39. Uye, S. and K. Kaname (1994): Relations between fecal pellet volume and body size for major zooplankters of the Inland Sea of Japan. J. Oceanogr., 50, 43–49.CrossRefGoogle Scholar
  40. Uye, S., I. Aoto and T. Onbé (2002): Seasonal population dynamics and production of Microsetella norvegica, a widely distributed but little-studied marine planktonic harpacticoid copepod. J. Plankton Res., 24, 143–153.CrossRefGoogle Scholar
  41. Welschmeyer, N. A. (1994): Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and phaeopigments. Limnol. Oceanogr., 39, 1985–1992.CrossRefGoogle Scholar
  42. Wilson, S. E., D. K. Steinberg and K. O. Buesseler (2008): Changes in fecal pellet characteristics with depth as indicators of zooplankton repackaging of particles in the mesopelagic zone of the subtropical and subarctic North Pacific Ocean. Deep-Sea Res. II, 55, 1636–1647.CrossRefGoogle Scholar
  43. Yoon, W. D., S. K. Kim and K. N. Han (2001): Morphology and sinking velocities of fecal pellets of copepod, molluscan, euphausiid, and salp taxa in the northeastern tropical Atlantic. Mar. Biol., 139, 923–928.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Toru Kobari
    • 1
  • Hiroyasu Akamatsu
    • 1
  • Masato Minowa
    • 1
  • Toshihiro Ichikawa
    • 2
  • Kazuo Iseki
    • 3
  • Ryuji Fukuda
    • 4
  • Masataka Higashi
    • 5
  1. 1.Fisheries Biology and Oceanography Division, Faculty of FisheriesKagoshima UniversityShimoarata, KagoshimaJapan
  2. 2.Department of Earth and Environment Science, Faculty of ScienceKagoshima UniversityKorimoto, KagoshimaJapan
  3. 3.Graduate School of Biosphere ScienceHiroshima UniversityKagamiyama, Higashi-HiroshimaJapan
  4. 4.Nansei-Maru, Faculty of FisheriesKagoshima UniversityShimoarata, KagoshimaJapan
  5. 5.Kagoshimai-Maru, Faculty of FisheriesKagoshima UniversityShimoarata, KagoshimaJapan

Personalised recommendations