Skip to main content
Log in

Additional flux arising from unresolved scales in eddying ocean models

  • Original Articles
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 2010

Abstract

An analysis is presented of snapshot data (eastward and northward velocity components: u and v; tracer such as potential temperature: τ) from an eddy-resolving (Rgrid: 1/12°) ocean model experiment, in order to explore a method for improving eddy-permitting model performance. Horizontal 3 × 3 R-grid averages give the eddy-permitting grid (P-grid: 1/4°) variables: 〈u〉, 〈v〉, and 〈τ〉, where 〈〉 denotes the spatial P-grid scale average. The difference between the horizontal tracer flux across the boundary face of a P-grid and that across the corresponding faces of R-grids is estimated as F2E. It is found that the correlations among the gradients of u, v, and τ give a good approximation F2C to the estimated flux F2E. The approximated flux is a function of these gradients and the grid size. A method is presented for implementing the F2C for density to an eddying ocean model as an additional advection. Practical experiments were conducted with a realistic configuration. It is shown that the zonal mean isotherms in the Kuroshio extension region are more flattened in the run using the proposed method than in another run using the conventional horizontal biharmonic operator, suggesting that the additional flux correction leads to an enhancement of sub-basin scale mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cox, M. D. (1987): Isopycnal diffusion in a z-coordinate ocean model. Ocean Modelling, 74, 1–5.

    Google Scholar 

  • Delhez, E. J. M. and E. Deleersnijder (2007): Overshootings and spurious oscillations caused by biharmonic mixing. Ocean Modell., 17, 183–198.

    Article  Google Scholar 

  • Gent, P. R. and J. C. McWilliams (1990): Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155.

    Article  Google Scholar 

  • Gent, P. R., J. Willebrand, T. J. McDougall and J. C. McWilliams (1995): Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463–474.

    Article  Google Scholar 

  • Griffies, S. M. (1998): The Gent-McWilliams skew flux. J. Phys. Oceanogr., 28, 831–841.

    Article  Google Scholar 

  • Griffies, S. M. and R. W. Hallberg (2000): Biharmonic friction with a Smagorinsky-like viscosity for use in large scale eddy-permitting ocean models. Mon. Wea. Rev., 128, 2935–2946.

    Article  Google Scholar 

  • Griffies, S. M., A. Gnanadesikan, R. C. Pacanowski, V. Larichev, J. K. Dukowicz and R. D. Smith (1998): Isoneutral diffusion in a z-coordinate ocean model. J. Phys. Oceanogr., 28, 808–830.

    Google Scholar 

  • Griffies, S. M., A. Biastoch, C. Böning, F. Bryan, G. Danabasoglu, E. P. Chassignet, M. H. England, R. Gerdes, H. Haak, R. W. Hallberg, W. Hazeleger, J. Jungclaus, W. G. Large, G. Madec, A. Pirani, B. L. Samuels, M. Scheinert, A. S. Gupta, C. A. Severijns, H. L. Simmons, A. M. Treguier, M. Winton, S. Yeager and J. Yin (2009): Coordinated Oceanice Reference Experiments (COREs). Ocean Modell., 26, 1–46.

    Article  Google Scholar 

  • Hofmann, M. and M. A. M. Maqueda (2006): Performance of a second-order moments advection scheme in an Ocean General Circulation Model. J. Geophys. Res., 111, C05006.

    Article  Google Scholar 

  • Ishikawa, I. and H. Ishizaki (2009): Importance of eddy representation for modeling the intermediate salinity minimum in the North Pacific: comparison between eddy-resolving and eddy-permitting models. J. Oceanogr., 65, 407–426.

    Article  Google Scholar 

  • Ishizaki, H. and T. Motoi (1999): Reevaluation of the Takano-Oonishi scheme for momentum advection on bottom relief in ocean models. J. Atmos. Oceanic Technol., 16, 1994–2010.

    Article  Google Scholar 

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino and G. L. Potter (2002)): NCEP-DOE AMIP II reanalysis (R-2). Bull. Amer. Meteorol. Soc., 83, 1631–1643.

    Article  Google Scholar 

  • Kara, A. B., P. A. Rochford and H. E. Hurlburt (2000): Efficient and accurate bulk parameterizations of air-sea fluxes for use in general circulation models. J. Atmos. Oceanic Technol., 17, 1421–1438.

    Article  Google Scholar 

  • Leonard, B. P. (1979): A stable and accurate convective modeling procedure based upon quadratic upstream interpolation. J. Comput. Methods Appl. Mech. Eng., 19, 59–98.

    Article  Google Scholar 

  • Leonard, B. P., M. K. MacVean and A. P. Lock (1993): Positivity-Preserving Numerical Schemes for Multidimensional Advection. NASA Tech. Memo., 106055, ICOMP-9-05, 62 pp.

  • Marshall, J. and G. Shutts (1981): A note on rotational and divergent eddy fluxes. J. Phys. Oceanogr., 11, 1677–1680.

    Article  Google Scholar 

  • Mellor, G. L. and T. Yamada (1982): Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851–875.

    Article  Google Scholar 

  • Nadiga, B. T. (2008): Orientation of eddy fluxes in geostrophic turbulence. Philos. Trans. Roy. Soc. London, 366, 2491–2510.

    Google Scholar 

  • Nishikawa, S., H. Tsujino, K. Sakamoto and H. Nakano (2010): Quantification of mesoscale eddy effects on subtropical mode water in an eddy-resolving OGCM of the western North Pacific. J. Phys. Oceanogr. (in press).

  • Prather, M. J. (1986): Numerical advection by conservation of second order moments. J. Geophys. Res., 91, 6671–6681.

    Article  Google Scholar 

  • Redi, M. H. (1982): Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 1154–1158.

    Article  Google Scholar 

  • Roberts, M. and D. Marshall (1998): Do we require adiabatic dissipation schemes in eddy-resolving ocean models? J. Phys. Oceanogr., 28, 2050–2063.

    Article  Google Scholar 

  • Smagorinsky, J. (1963): General circulation experiments with the primitive equations. I. The basic experiment. Mon. Wea. Rev., 91, 99–164.

    Article  Google Scholar 

  • Smith, R. D. and P. R. Gent (2004): Anisotropic GM parameterization for ocean models. J. Phys. Oceanogr., 34, 2541–2564.

    Article  Google Scholar 

  • St. Laurent, L., H. Simmons and S. Jayne (2002): Estimating tidally driven energy in the deep ocean. Geophys. Res. Lett., 29, 2106–2110.

    Article  Google Scholar 

  • Steele, M., R. Morley and W. Ermold (2001): PHC: A global ocean hydrography with a high-quality arctic ocean. J. Climate, 14, 2079–2087.

    Article  Google Scholar 

  • Treguier, A. M., I. Held and V. Larichev (1997): On the parameterization of quasi-geostrophic eddies in primitive equation ocean models. J. Phys. Oceanogr., 31, 554–571.

    Google Scholar 

  • Tsujino, H., T. Motoi, I. Ishikawa, M. Hirabara, H. Nakano, G. Yamanaka, T. Yasuda and H. Ishizaki (2010): Reference manual for the Meteorological Research Institute Community Ocean Model (MRI.COM) Version 3. Technical Reports of the Meteorological Research Institute, 59, 241 pp.

  • Wilson, C. and R. G. Williams (2006): When are eddy tracer fluxes directed downgradient? J. Phys. Oceanogr., 36, 189–201.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikitoshi Hirabara.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10872-010-0073-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirabara, M., Ishizaki, H., Yamanaka, G. et al. Additional flux arising from unresolved scales in eddying ocean models. J Oceanogr 66, 633–647 (2010). https://doi.org/10.1007/s10872-010-0052-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-010-0052-6

Keywords

Navigation