Journal of Oceanography

, Volume 66, Issue 4, pp 475–487 | Cite as

Alternating zonal flows in a two-layer wind-driven ocean

Original Articles


Alternating zonal flows in an idealized wind-driven double-gyre ocean circulation have been investigated using a two-layer shallow-water eddy-permitting numerical model. While the alternating zonal flows are found almost everywhere in the time-mean zonal velocity field, their meridional scales differ from region to region. In the subpolar western boundary region, where the energetic eddy activity induces quasi two-dimensional turbulence, the alternating zonal flows are generated by the inverse energy cascade and its arrest by Rossby waves, and the meridional scale of the flows corresponds well to the Rhines scale. In the eastern part of the basin, where barotropic basin modes are dominant, the zonal structure is formed through the nonlinear effect of the basin modes and is wider than the Rhines scale. Both effects are likely to form zonal structure between the two regions. These results show that Rossby basin modes become an important factor in the formation of alternating zonal flows in a closed basin in addition to the arrest of the inverse energy cascade by Rossby waves. The wind-driven general circulation associated with eddy activities plays an essential role in determining which mechanism of the alternating zonal flows is possible in each region.


Zonal flow Rhines scale basin mode wind-driven circulation inverse energy cascade nonlinear rectification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arbic, B. K. and G. R. Flierl (2004): Baroclinically unstable geostrophic turbulence in the limit of strong and weak bottom Ekman Friction: Application to midocean eddies. J. Phys. Oceanogr., 34, 2257–2273.CrossRefGoogle Scholar
  2. Babiano, A., C. Basdevant and R. Sadourny (1985): Structure functions and dispersion laws in two-dimensional turbulence. J. Atmos. Sci., 42, 941–949.CrossRefGoogle Scholar
  3. Batchelor, G. K. (1969): Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids Suppl. II, 233–239.Google Scholar
  4. Berloff, P. S. (2005): On rectification of randomly forced flows. J. Mar. Res., 63, 497–527.CrossRefGoogle Scholar
  5. Berloff, P., I. Kamenkovich and J. Pedlosky (2009): A model of multiple zonal jets in the oceans: dynamical and kinematical analysis. J. Phys. Oceanogr., 39, 2711–2734.CrossRefGoogle Scholar
  6. Duchon, C. E. (1979): Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 1016–1022.CrossRefGoogle Scholar
  7. Galperin, B., H. Nakano, H.-P. Huang and S. Sukoriansky (2004): The ubiquitous zonal jets in the atmospheres of giant planets and Earth’s oceans. Geophys. Res. Lett., 31, L13303, doi:10.1029/2004GL019691.CrossRefGoogle Scholar
  8. Hogg, N. G. and W. B. Owens (1999): Direct measurement of the deep circulation within the Brazil Basin. Deep-Sea Res. II, 46, 335–353.CrossRefGoogle Scholar
  9. Huang, H.-P., A. Kaplan, E. N. Curchitser and N. A. Maximenko (2007): The degree of anisotropy for mid-ocean currents from satellite observations and an eddy-permitting model simulation. J. Geophys. Res., 112, C09005, doi:10.1029/2007JC004105.CrossRefGoogle Scholar
  10. Kamenkovich, I., P. Berloff and J. Pedlosky (2009): Role of eddy forcing in the dynamics of multiple zonal jets in a model of the North Atlantic. J. Phys. Oceanogr., 39, 1361–1379.CrossRefGoogle Scholar
  11. Kraichnan, R. H. (1967): Inertial range in two-dimensional turbulence. Phys. Fluids, 10, 1417–1423.CrossRefGoogle Scholar
  12. Kramer, W., M. G. van Buren, H. J. H. Clercx and G. J. van Heijst (2006): β-plane turbulence in a basin with no-slip boundaries. Phys. Fluids, 18, 026603.CrossRefGoogle Scholar
  13. Kurogi, M. and K. Akitomo (2003): Stable paths of the Kuroshio south of Japan determined by the wind stress field. J. Geophys. Res., 108, 3332, doi:10.1029/2003JC001853.CrossRefGoogle Scholar
  14. LaCasce, J. H. (2002): On turbulence and normal modes in a basin. J. Mar. Res., 60, 431–460.CrossRefGoogle Scholar
  15. Lilly, D. K. (1969): Numerical simulation of two-dimensional turbulence. Phys. Fluids Suppl. II, 240–249.Google Scholar
  16. Lindborg, E. (1999): Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech., 388, 259–288.CrossRefGoogle Scholar
  17. Maximenko, N. A., B. Bang and H. Sasaki (2005): Observational evidence of alternating zonal jets in the world ocean. Geophys. Res. Lett., 32, L12607, doi:10.1029/2005GL022728.CrossRefGoogle Scholar
  18. Maximenko, N. A., O. V. Melnichenko, P. P. Niiler and H. Sasaki (2008): Stationary mesoscale jet-like features in the ocean. Geophys. Res. Lett., 35, L08603, doi:10.1029/2008GL33267.CrossRefGoogle Scholar
  19. Nadiga, B. T. (2006): On zonal jets in oceans. Geophys. Res. Lett., 33, L10601, doi:10.1029/2006GL025865.CrossRefGoogle Scholar
  20. Nakano, H. and H. Hasumi (2005): A series of zonal jets embedded in the broad zonal flows in the Pacific obtained in eddy-permitting ocean general circulation models. J. Phys. Oceanogr., 35, 474–488.CrossRefGoogle Scholar
  21. Nakano, H. and N. Suginohara (2002): A series of middepth zonal flows in the Pacific driven by winds. J. Phys. Oceanogr., 32, 161–176.CrossRefGoogle Scholar
  22. Ollitrault, M., M. Lankhorst, D. Fratantoni, P. Richardson and W. Zenk (2006): Zonal intermediate current in equatorial Atlantic Ocean. Geophys. Res. Lett., 33, L05605, doi:10.1029/2005GL025368.CrossRefGoogle Scholar
  23. Pedlosky, J. (1965): A study of the time dependent ocean circulation. J. Atmos. Sci., 22, 267–272.CrossRefGoogle Scholar
  24. Pedlosky, J. (1987): Geophysical Fluid Dynamics. 2nd ed., Springer.Google Scholar
  25. Rhines, P. B. (1975): Waves and turbulence on a beta-plane. J. Fluid Mech., 69, 417–443.CrossRefGoogle Scholar
  26. Richards, K. J., N. A. Maximenko, F. O. Bryan and H. Sasaki (2006): Zonal jets in the Pacific Ocean. Geophys. Res. Lett., 33, L03605, doi:10.1029/2005GL024645.CrossRefGoogle Scholar
  27. Richman, J. G., C. Wunsch and N. G. Hogg (1977): Space and time scales of mesoscale motion in the Wstern North Atlantic. Rev. Geophys., 15, 385–420.CrossRefGoogle Scholar
  28. Stammer, D. (1997): Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements. J. Phys. Oceanogr., 27, 1743–1769.CrossRefGoogle Scholar
  29. Torrence, C. and G. P. Compo (1998): A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 61–78.CrossRefGoogle Scholar
  30. Treguire, A. M., N. G. Hogg, M. Maltrud, K. Speer and V. Thierry (2003): The origin of deep zonal flows in the Brazil Basin. J. Phys. Oceanogr., 33, 580–599.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Geophysics, Graduate School of ScienceKyoto UniversityKyotoJapan

Personalised recommendations