Skip to main content

Advertisement

Log in

Biomarker records from core GH02-1030 off Tokachi in the northwestern Pacific over the last 23,000 years: Environmental changes during the last deglaciation

  • Original Articles
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

We investigated marine and terrestrial environmental changes at the northern Japan margin in the northwestern Pacific during the last 23,000 years by analyzing biomarkers (alkenones, long-chain n-alkanes, long-chain n-fatty acids, and lignin-derived materials) in Core GH02-1030. The U K′37 -derived temperature in the last glacial maximum (LGM) centered at 21 ka was ∼10°C, which was 2°C lower than the core-top temperature (∼12°C). This small temperature drop does not agree with pollen evidence of a large air temperature drop (more than 4°C) in the Tokachi area. This disagreement might be attributed to a bias of U K′37 -derived temperature within 2.5°C by a seasonal shift in alkenone production. The U K′37 -derived temperature was significantly low during the last deglaciation. Because this cooling was significant in the Kuroshio-Oyashio transition zone, the temperature drops are attributable to the southward displacement of the Kuroshio-Oyashio boundary. Abundant lignin-derived materials, long-chain n-alkanes and long-chain n-fatty acids indicate a higher contribution of terrigenous organic matter from 17 to 12 ka. This phenomenon might have resulted from an enhanced coastal erosion of terrestrial soils due to marine transgression and/or an efficient inflow of higher plant debris to river waters from 17 to 12 ka.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alam, M. J., S. Nagao, T. Aramaki, Y. Shibata and M. Yoneda (2007): Transport of particulate organic matter in the Ishikari River, Japan during spring and summer. Nucl. Instr. Meth. Phys. Res. B, 259, 513–517.

    Article  Google Scholar 

  • Brassell, S. C., G. Eglinton, I. T. Marlowe, U. Pflaumann and M. Sarnthein (1986): Molecular stratigraphy: a new tool for climatic assessment. Nature, 320, 129–133.

    Article  Google Scholar 

  • Bray, E. E. and E. D. Evans (1961): Distribution of n-paraffins as a clue to the recognition of source beds. Geochim. Cosmochim. Acta, 22, 2–9.

    Article  Google Scholar 

  • Chinzei, K., K. Fujioka, H. Kitazato, I. Koizumi, T. Oba, M. Oda, H. Okada, T. Sakai and Y. Tanimura (1987): Postglacial environmental change of the Pacific Ocean off the coasts of central Japan. Mar. Micropal., 11, 273–291.

    Article  Google Scholar 

  • Conte, M. H., A. Thompson, D. Lesley and R. P. Harris (1998): Genetic and physiological influences on the alkenone/alkenoate versus growth temperature relationship in Emiliania huxleyi and Gephyrocapsa oceanica. Geochim. Cosmochim. Acta, 62, 51–68.

    Article  Google Scholar 

  • Dettinger, M. D., D. S. Battisti, R. D. Garreaud, G. J. McCabe, Jr. and C. M. Bitz (2001): Interhemispheric effects of interannual and decadal ENSO-like climate variations on the Americas. p. 1–16. In Interhemispheric Climate Linkages, Academic Press, San Diego.

    Google Scholar 

  • Di Lorenzo, E., N. Schneider, K. M. Cobb, P. J. S. Franks, K. Chhak, A. J. Miller, J. C. McWilliams, S. J. Bograd, H. Arango, E. Curchitser, T. M. Powell and P. Rivière (2008): North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys. Res. Lett., 35, L08607.

    Article  Google Scholar 

  • Eglinton, G. and R. J. Hamilton (1967): Leaf epicuticular waxes. Science, 156, 1322–1355.

    Article  Google Scholar 

  • Fujine, K., M. Yamamoto, R. Tada and Y. Kido (2006): A salinity-related occurrence of a novel alkenone and alkenoate in Late Pleistocene sediments from the Japan Sea. Org. Geochem., 37, 1074–1084.

    Article  Google Scholar 

  • Goñi, M. A. and J. I. Hedges (1992): Lignin dimers: Structures, distribution, and potential geochemical applications. Geochim. Cosmochim. Acta, 56, 4025–4043.

    Article  Google Scholar 

  • Goñi, M. A., B. Nelson, R. A. Blanchette and J. I. Hedges (1993): Fungal degradation of wood lignins: Geochemical perspectives from CuO-derived phenolic dimers and monomers. Geochim. Cosmochim. Acta, 57, 3985–4002.

    Article  Google Scholar 

  • Harada, N., N. Ahagon, M. Uchida and M. Murayama (2004): Northward and southward migrations of frontal zones during the past 40 kyr in the Kuroshio-Oyashio transition area. Geochem. Geophys. Geosyst., 5, Q09004.

    Article  Google Scholar 

  • Harada, N., N. Ahagon, T. Sakamoto, M. Uchida, M. Ikehara and Y. Shibahara (2006a): Rapid fluctuation of alkenone temperature in the southwestern Okhotsk Sea during the past 120 ky. Global Planet. Change, 55, 29–46.

    Article  Google Scholar 

  • Harada, N., M. Sato, A. Shiraishi and M. C. Honda (2006b): Characteristics of alkenone distributions in suspended and sinking particles in the northwestern North Pacific. Geochim. Cosmochim. Acta, 70, 2045–2062.

    Article  Google Scholar 

  • Hatcher, P. G., M. A. Nanny, R. D. Minard, S. D. Dible and D. M. Carson (1995): Comparison of two thermochemolytic methods for the analysis of lignin in decomposing gymnosperm wood: the CuO oxidation method and the method of thermochemolysis with tetramethylammonium hydroxide (TMAH). Org. Geochem., 23, 881–888.

    Article  Google Scholar 

  • Hedges, J. I. and D. C. Mann (1979a): The lignin geochemistry of marine sediments from the southern Washington coast. Geochim. Cosmochim. Acta, 43, 1809–1918.

    Article  Google Scholar 

  • Hedges, J. I. and D. C. Mann (1979b): The characterization of plant tissues by their lignin oxidation products. Geochim. Cosmochim. Acta, 43, 1803–1807.

    Article  Google Scholar 

  • Hirakawa, K. (1977): Chronology and evolution of landforms during the late Quaternary in the Tokachi Plain and adjacent areas, Hokkaido, Japan. Catena, 4, 255–288.

    Article  Google Scholar 

  • Hirakawa, K. and Y. Ono (1974): The landform evolution of the Tokachi Plain. Geograph. Rev. Japan, 47, 607–632 (in Japanese).

    Article  Google Scholar 

  • Igarashi, Y. (1996): A late glacial climate reversion in Hokkaido, Northeast Asia, inferred from the Larix pollen record. Quat. Sci. Rev., 15, 989–995.

    Article  Google Scholar 

  • Igarashi, Y. and T. Igarashi (1998): Late Holocene vegetation history in south Sakhalin, northeast Asia. Jpn. J. Ecol., 48, 231–244 (in Japanese).

    Google Scholar 

  • Ikehara, K., K. Ohkushi, A. Shibahara and M. Hoshiba (2006): Change of bottom water conditions at intermediate depths of the Oyashio region, NW Pacific over the past 20,000 yrs. Global Planet. Change, 53, 78–91.

    Article  Google Scholar 

  • Ishiwatari, R., M. Houtatsu and H. Okada (2001): Alkenone-sea surface temperatures in the Japan Sea over the past 36 kyrs: Warm temperatures at the last glacial maximum. Org. Geochem., 32, 57–67.

    Article  Google Scholar 

  • Ishiwatari, R., S. Yamamoto and S. Shimoyama (2006): Lignin and fatty acid records in Lake Baikal sediments over the last 130 kyr: A comparison with pollen records. Org. Geochem., 37, 1787–1802.

    Article  Google Scholar 

  • Isono, D., M. Yamamoto, T. Irino, T. Oba, M. Murayama, T. Nakamura and H. Kawahata (2009): The 1,500-year climate oscillation in the mid-latitude North Pacific during the Holocene. Geology, 37, 591–594.

    Article  Google Scholar 

  • Japan Weather Association (1982): Climate of Hokkaido. Japan Weather Association, Hokkaido Headquater, Sapporo, 319 pp. (in Japanese).

    Google Scholar 

  • Kiefer, T. and M. Kienast (2005): Patterns of deglacial warming in the Pacific Ocean: a review with emphasis on the time interval of Heinrich event. Quat. Sci. Rev., 24, 1063–1081.

    Article  Google Scholar 

  • Kuzmin, Y. V., G. S. Burr and A. J. T. Jull (2001): Radiocarbon reservoir correction ages in the Peter the Great Gulf, Sea of Japan, and eastern coast of the Kunasir, Southern Kurils (Northwestern Pacific). Radiocarbon, 43, 477–481.

    Article  Google Scholar 

  • Kvenvolden, K. A. (1967): Normal fatty acids in sediments. J. Amer. Oil Chem. Soc., 44, 628–636.

    Article  Google Scholar 

  • Lambeck, K., Y. Yokoyama and T. Purcell (2002): Into and out of the Last Glacial Maximum: sea level change during Oxygen Isotope Stages 3 and 2. Quat. Sci. Rev., 21, 343–360.

    Article  Google Scholar 

  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace and R. C. Francis (1997): A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteorol. Soc., 78, 1069–1079.

    Article  Google Scholar 

  • Minobe, S. (1997): A 50–70 year climate oscillation over the North Pacific and North America. Geophys. Res. Lett., 24, 683–686.

    Article  Google Scholar 

  • Minoshima, K., H. Kawahata and K. Ikehara (2007): Changes in biological production in the mixed water region (MWR) of the northwestern North Pacific during the last 27 kyr. Palaeogeogr., Palaeoclimatol., Palaeoecol., 254, 430–447.

    Article  Google Scholar 

  • Moore, T. C., L. H. Burkle, K. Geitzenauer et al. (1980): The reconstruction of sea surface temperatures in the Pacific Ocean of 18,000 B.P. Mar. Micropal., 5, 215–247.

    Article  Google Scholar 

  • National Astronomical Observatory (2000): Chronological Scientific Tables 2001. Maruzen, Tokyo, 1064 pp. (in Japanese).

    Google Scholar 

  • Oba, T. and M. Murayama (2004): Sea surface temperature and salinity changes in the northwest Pacific since the last glacial maximum. J. Quat. Sci., 19, 1–12.

    Article  Google Scholar 

  • Ogi, M., Y. Tachibana and K. Yamazaki (2004): The connectivity of the winter North Atlantic Oscillation (NAO) and the summer Okhotsk High. J. Meteorol. Soc. Japan, 82, 905–913.

    Article  Google Scholar 

  • Oguri, K., E. Matsumoto, Y. Saito, M. C. Honda, N. Harada and M. Kusakabe (2000): Evidence for the offshore transport of terrestrial organic matter due to the rise of sea level: The case of the East China Sea continental shelf. Geophys. Res. Lett., 27, 3893–3896.

    Article  Google Scholar 

  • Ono, Y. and K. Hirakawa (1975): Glacial and periglacial morphogenetic environments around the Hidaka Range in the Würm glacial age. Geograph. Rev. Japan, 48, 1–26.

    Article  Google Scholar 

  • Philipi, G. T. (1965): On the depth, time and mechanism of petroleum generation. Geochim. Cosmochim. Acta, 29, 1021–1049.

    Article  Google Scholar 

  • Prahl, F. G., L. A. Muehlhausen and D. L. Zahnle (1988): Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochim. Cosmochim. Acta, 52, 2303–2310.

    Article  Google Scholar 

  • Reimer, P. J. et al. (2004): IntCal04 Terrestrial radiocarbon age calibration, 26-0 ka BP. Radiocarbon, 46, 1029–1058.

    Article  Google Scholar 

  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes and W. Wang (2002): An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609–1625.

    Article  Google Scholar 

  • Sagawa, T. and K. Ikehara (2008): Intermediate water ventilation change in the subarctic northwest Pacific during the last deglaciation. Geophys. Res. Lett., 35, L24702, doi:10.1029/2008GL035133.

    Article  Google Scholar 

  • Sakaguchi, Y. (1989): Some pollen records from Hokkaido and Sakhalin. Bull. Dpt. Geography, Univ. Tokyo, 21, 1–17.

    Google Scholar 

  • Sawada, K., N. Handa and T. Nakatsuka (1998): Production and transport of long-chain alkenones and alkyl alkenoates in a sea water column in the northwestern Pacific off central Japan. Mar. Chem., 59, 219–234.

    Article  Google Scholar 

  • Seki, O., K. Kawamura, T. Nakatsuka, K. Ohnishi, M. Ikehara and M. Wakatsuchi (2003): Sediment core profiles of long-chain n-alkanes in the Sea of Okhotsk: Enhanced transport of terrestrial organic matter from the last deglaciation to the early Holocene. Geophys. Res. Lett., 30, 1001.

    Article  Google Scholar 

  • Seki, O., K. Kawamura, M. Ikehara, T. Nakatsuka and T. Oba (2004): Variation of alkenone sea surface temperature in the Sea of Okhotsk over the last 85 kyrs. Org. Geochem., 35, 347–354.

    Article  Google Scholar 

  • Ternois, Y., K. Kawamura, L. Keigwin, N. Ohkouchi and T. Nakatsuka (2001): A biomarker approach for assessing marine and terrigenous inputs to the sediments of Sea of Okhotsk for the last 27,000 years. Geochim. Cosmochim. Acta, 65, 791–802.

    Article  Google Scholar 

  • Thompson, P. R. and N. J. Shackleton (1980): North Pacific paleoceanography: late Quaternary coiling variations of planktonic foraminifer Neogloboquadrina pachyderma. Nature, 287, 829–833.

    Article  Google Scholar 

  • Usui, T., S. Nagao, M. Yamamoto, K. Suzuki, I. Kudo, S. Montani, A. Noda and M. Minagawa (2006): Distribution and sources of organic matter in surficial sediments on the shelf and slope off Tokachi, western North Pacific, inferred from C and N stable isotopes and C/N ratios. Mar. Chem., 98, 241–259.

    Article  Google Scholar 

  • Yamamoto, M. (2004): Data report: Organic carbon, and alkenone sea-surface temperature from Sites 1175, 1176, and 1178, Nankai Trough. Proc. ODP, Sci. Res., 190,196, 1–10.

    Google Scholar 

  • Yamamoto, M. (2009): Response of mid-latitude North Pacific surface temperatures to orbital forcing and linkage to the East Asian summer monsoon and tropical ocean-atmosphere interactions. J. Quat. Sci. (in press).

  • Yamamoto, M., M. Yamamuro and R. Tada (2000): Late Quaternary records of organic carbon, calcium carbonate and biomarkers from Site 1016 off Point Conception, California margin. Proc. ODP, Sci. Res., 167, 183–194.

    Google Scholar 

  • Yamamoto, M., H. Kayanne and M. Yamamuro (2001): Characteristics of organic matter in lagoonal sediments from the Great Barrier Reef. Geochem. J., 35, 385–401.

    Article  Google Scholar 

  • Yamamoto, M., T. Oba, J. Shimamune and T. Ueshima (2004): Orbital-scale anti-phase variation of sea surface temperature in mid-latitude North Pacific margins during the last 145,000 years. Geophys. Res. Lett., 31, L16311, doi:10.1029/2004GL020138.

    Article  Google Scholar 

  • Yamamoto, M., Y. Ichikawa, Y. Igarashi and T. Oba (2005a): Late Quaternary variation of lignin composition in Core MD012421 off central Japan, NW Pacific. Palaeogeogr., Palaeoclimatol., Palaeoecol., 229, 179–186.

    Article  Google Scholar 

  • Yamamoto, M., R. Suemune and T. Oba (2005b): Equatorward shift of the subarctic boundary in the northwestern Pacific during the last deglaciation. Geophys. Res. Lett., 32, L05609, doi:10.1029/2004GL0201903.

    Article  Google Scholar 

  • Yamamoto, M., A. Shimamoto, T. Fukuhara, H. Naraoka, Y. Tanaka and A. Nishimura (2007): Seasonal and depth variations in molecular and isotopic alkenone composition of sinking particles from the western North Pacific. Deep-Sea Res. I, 54, 1571–1592.

    Article  Google Scholar 

  • Yamamoto, S. (2000): A basic investigation for high resolution analysis of paleo-climatic changes by the tetramethyl ammonium hydroxide (TMAH) method. Bull. Faculty Education, Soka Univ., 49, 61–78 (in Japanese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanobu Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inagaki, M., Yamamoto, M., Igarashi, Y. et al. Biomarker records from core GH02-1030 off Tokachi in the northwestern Pacific over the last 23,000 years: Environmental changes during the last deglaciation. J Oceanogr 65, 847–858 (2009). https://doi.org/10.1007/s10872-009-0070-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-009-0070-4

Keywords

Navigation