Journal of Oceanography

, 65:847 | Cite as

Biomarker records from core GH02-1030 off Tokachi in the northwestern Pacific over the last 23,000 years: Environmental changes during the last deglaciation

  • Masaki Inagaki
  • Masanobu Yamamoto
  • Yaeko Igarashi
  • Ken Ikehara
Original Articles


We investigated marine and terrestrial environmental changes at the northern Japan margin in the northwestern Pacific during the last 23,000 years by analyzing biomarkers (alkenones, long-chain n-alkanes, long-chain n-fatty acids, and lignin-derived materials) in Core GH02-1030. The U 37 K′ -derived temperature in the last glacial maximum (LGM) centered at 21 ka was ∼10°C, which was 2°C lower than the core-top temperature (∼12°C). This small temperature drop does not agree with pollen evidence of a large air temperature drop (more than 4°C) in the Tokachi area. This disagreement might be attributed to a bias of U 37 K′ -derived temperature within 2.5°C by a seasonal shift in alkenone production. The U 37 K′ -derived temperature was significantly low during the last deglaciation. Because this cooling was significant in the Kuroshio-Oyashio transition zone, the temperature drops are attributable to the southward displacement of the Kuroshio-Oyashio boundary. Abundant lignin-derived materials, long-chain n-alkanes and long-chain n-fatty acids indicate a higher contribution of terrigenous organic matter from 17 to 12 ka. This phenomenon might have resulted from an enhanced coastal erosion of terrestrial soils due to marine transgression and/or an efficient inflow of higher plant debris to river waters from 17 to 12 ka.


North Pacific Japan East Asia biomarker glacial deglacial paleoenvironment paleotemperature 


  1. Alam, M. J., S. Nagao, T. Aramaki, Y. Shibata and M. Yoneda (2007): Transport of particulate organic matter in the Ishikari River, Japan during spring and summer. Nucl. Instr. Meth. Phys. Res. B, 259, 513–517.CrossRefGoogle Scholar
  2. Brassell, S. C., G. Eglinton, I. T. Marlowe, U. Pflaumann and M. Sarnthein (1986): Molecular stratigraphy: a new tool for climatic assessment. Nature, 320, 129–133.CrossRefGoogle Scholar
  3. Bray, E. E. and E. D. Evans (1961): Distribution of n-paraffins as a clue to the recognition of source beds. Geochim. Cosmochim. Acta, 22, 2–9.CrossRefGoogle Scholar
  4. Chinzei, K., K. Fujioka, H. Kitazato, I. Koizumi, T. Oba, M. Oda, H. Okada, T. Sakai and Y. Tanimura (1987): Postglacial environmental change of the Pacific Ocean off the coasts of central Japan. Mar. Micropal., 11, 273–291.CrossRefGoogle Scholar
  5. Conte, M. H., A. Thompson, D. Lesley and R. P. Harris (1998): Genetic and physiological influences on the alkenone/alkenoate versus growth temperature relationship in Emiliania huxleyi and Gephyrocapsa oceanica. Geochim. Cosmochim. Acta, 62, 51–68.CrossRefGoogle Scholar
  6. Dettinger, M. D., D. S. Battisti, R. D. Garreaud, G. J. McCabe, Jr. and C. M. Bitz (2001): Interhemispheric effects of interannual and decadal ENSO-like climate variations on the Americas. p. 1–16. In Interhemispheric Climate Linkages, Academic Press, San Diego.CrossRefGoogle Scholar
  7. Di Lorenzo, E., N. Schneider, K. M. Cobb, P. J. S. Franks, K. Chhak, A. J. Miller, J. C. McWilliams, S. J. Bograd, H. Arango, E. Curchitser, T. M. Powell and P. Rivière (2008): North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys. Res. Lett., 35, L08607.CrossRefGoogle Scholar
  8. Eglinton, G. and R. J. Hamilton (1967): Leaf epicuticular waxes. Science, 156, 1322–1355.CrossRefGoogle Scholar
  9. Fujine, K., M. Yamamoto, R. Tada and Y. Kido (2006): A salinity-related occurrence of a novel alkenone and alkenoate in Late Pleistocene sediments from the Japan Sea. Org. Geochem., 37, 1074–1084.CrossRefGoogle Scholar
  10. Goñi, M. A. and J. I. Hedges (1992): Lignin dimers: Structures, distribution, and potential geochemical applications. Geochim. Cosmochim. Acta, 56, 4025–4043.CrossRefGoogle Scholar
  11. Goñi, M. A., B. Nelson, R. A. Blanchette and J. I. Hedges (1993): Fungal degradation of wood lignins: Geochemical perspectives from CuO-derived phenolic dimers and monomers. Geochim. Cosmochim. Acta, 57, 3985–4002.CrossRefGoogle Scholar
  12. Harada, N., N. Ahagon, M. Uchida and M. Murayama (2004): Northward and southward migrations of frontal zones during the past 40 kyr in the Kuroshio-Oyashio transition area. Geochem. Geophys. Geosyst., 5, Q09004.CrossRefGoogle Scholar
  13. Harada, N., N. Ahagon, T. Sakamoto, M. Uchida, M. Ikehara and Y. Shibahara (2006a): Rapid fluctuation of alkenone temperature in the southwestern Okhotsk Sea during the past 120 ky. Global Planet. Change, 55, 29–46.CrossRefGoogle Scholar
  14. Harada, N., M. Sato, A. Shiraishi and M. C. Honda (2006b): Characteristics of alkenone distributions in suspended and sinking particles in the northwestern North Pacific. Geochim. Cosmochim. Acta, 70, 2045–2062.CrossRefGoogle Scholar
  15. Hatcher, P. G., M. A. Nanny, R. D. Minard, S. D. Dible and D. M. Carson (1995): Comparison of two thermochemolytic methods for the analysis of lignin in decomposing gymnosperm wood: the CuO oxidation method and the method of thermochemolysis with tetramethylammonium hydroxide (TMAH). Org. Geochem., 23, 881–888.CrossRefGoogle Scholar
  16. Hedges, J. I. and D. C. Mann (1979a): The lignin geochemistry of marine sediments from the southern Washington coast. Geochim. Cosmochim. Acta, 43, 1809–1918.CrossRefGoogle Scholar
  17. Hedges, J. I. and D. C. Mann (1979b): The characterization of plant tissues by their lignin oxidation products. Geochim. Cosmochim. Acta, 43, 1803–1807.CrossRefGoogle Scholar
  18. Hirakawa, K. (1977): Chronology and evolution of landforms during the late Quaternary in the Tokachi Plain and adjacent areas, Hokkaido, Japan. Catena, 4, 255–288.CrossRefGoogle Scholar
  19. Hirakawa, K. and Y. Ono (1974): The landform evolution of the Tokachi Plain. Geograph. Rev. Japan, 47, 607–632 (in Japanese).Google Scholar
  20. Igarashi, Y. (1996): A late glacial climate reversion in Hokkaido, Northeast Asia, inferred from the Larix pollen record. Quat. Sci. Rev., 15, 989–995.CrossRefGoogle Scholar
  21. Igarashi, Y. and T. Igarashi (1998): Late Holocene vegetation history in south Sakhalin, northeast Asia. Jpn. J. Ecol., 48, 231–244 (in Japanese).Google Scholar
  22. Ikehara, K., K. Ohkushi, A. Shibahara and M. Hoshiba (2006): Change of bottom water conditions at intermediate depths of the Oyashio region, NW Pacific over the past 20,000 yrs. Global Planet. Change, 53, 78–91.CrossRefGoogle Scholar
  23. Ishiwatari, R., M. Houtatsu and H. Okada (2001): Alkenone-sea surface temperatures in the Japan Sea over the past 36 kyrs: Warm temperatures at the last glacial maximum. Org. Geochem., 32, 57–67.CrossRefGoogle Scholar
  24. Ishiwatari, R., S. Yamamoto and S. Shimoyama (2006): Lignin and fatty acid records in Lake Baikal sediments over the last 130 kyr: A comparison with pollen records. Org. Geochem., 37, 1787–1802.CrossRefGoogle Scholar
  25. Isono, D., M. Yamamoto, T. Irino, T. Oba, M. Murayama, T. Nakamura and H. Kawahata (2009): The 1,500-year climate oscillation in the mid-latitude North Pacific during the Holocene. Geology, 37, 591–594.CrossRefGoogle Scholar
  26. Japan Weather Association (1982): Climate of Hokkaido. Japan Weather Association, Hokkaido Headquater, Sapporo, 319 pp. (in Japanese).Google Scholar
  27. Kiefer, T. and M. Kienast (2005): Patterns of deglacial warming in the Pacific Ocean: a review with emphasis on the time interval of Heinrich event. Quat. Sci. Rev., 24, 1063–1081.CrossRefGoogle Scholar
  28. Kuzmin, Y. V., G. S. Burr and A. J. T. Jull (2001): Radiocarbon reservoir correction ages in the Peter the Great Gulf, Sea of Japan, and eastern coast of the Kunasir, Southern Kurils (Northwestern Pacific). Radiocarbon, 43, 477–481.Google Scholar
  29. Kvenvolden, K. A. (1967): Normal fatty acids in sediments. J. Amer. Oil Chem. Soc., 44, 628–636.CrossRefGoogle Scholar
  30. Lambeck, K., Y. Yokoyama and T. Purcell (2002): Into and out of the Last Glacial Maximum: sea level change during Oxygen Isotope Stages 3 and 2. Quat. Sci. Rev., 21, 343–360.CrossRefGoogle Scholar
  31. Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace and R. C. Francis (1997): A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteorol. Soc., 78, 1069–1079.CrossRefGoogle Scholar
  32. Minobe, S. (1997): A 50–70 year climate oscillation over the North Pacific and North America. Geophys. Res. Lett., 24, 683–686.CrossRefGoogle Scholar
  33. Minoshima, K., H. Kawahata and K. Ikehara (2007): Changes in biological production in the mixed water region (MWR) of the northwestern North Pacific during the last 27 kyr. Palaeogeogr., Palaeoclimatol., Palaeoecol., 254, 430–447.CrossRefGoogle Scholar
  34. Moore, T. C., L. H. Burkle, K. Geitzenauer et al. (1980): The reconstruction of sea surface temperatures in the Pacific Ocean of 18,000 B.P. Mar. Micropal., 5, 215–247.CrossRefGoogle Scholar
  35. National Astronomical Observatory (2000): Chronological Scientific Tables 2001. Maruzen, Tokyo, 1064 pp. (in Japanese).Google Scholar
  36. Oba, T. and M. Murayama (2004): Sea surface temperature and salinity changes in the northwest Pacific since the last glacial maximum. J. Quat. Sci., 19, 1–12.CrossRefGoogle Scholar
  37. Ogi, M., Y. Tachibana and K. Yamazaki (2004): The connectivity of the winter North Atlantic Oscillation (NAO) and the summer Okhotsk High. J. Meteorol. Soc. Japan, 82, 905–913.CrossRefGoogle Scholar
  38. Oguri, K., E. Matsumoto, Y. Saito, M. C. Honda, N. Harada and M. Kusakabe (2000): Evidence for the offshore transport of terrestrial organic matter due to the rise of sea level: The case of the East China Sea continental shelf. Geophys. Res. Lett., 27, 3893–3896.CrossRefGoogle Scholar
  39. Ono, Y. and K. Hirakawa (1975): Glacial and periglacial morphogenetic environments around the Hidaka Range in the Würm glacial age. Geograph. Rev. Japan, 48, 1–26.Google Scholar
  40. Philipi, G. T. (1965): On the depth, time and mechanism of petroleum generation. Geochim. Cosmochim. Acta, 29, 1021–1049.CrossRefGoogle Scholar
  41. Prahl, F. G., L. A. Muehlhausen and D. L. Zahnle (1988): Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochim. Cosmochim. Acta, 52, 2303–2310.CrossRefGoogle Scholar
  42. Reimer, P. J. et al. (2004): IntCal04 Terrestrial radiocarbon age calibration, 26-0 ka BP. Radiocarbon, 46, 1029–1058.Google Scholar
  43. Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes and W. Wang (2002): An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609–1625.CrossRefGoogle Scholar
  44. Sagawa, T. and K. Ikehara (2008): Intermediate water ventilation change in the subarctic northwest Pacific during the last deglaciation. Geophys. Res. Lett., 35, L24702, doi:10.1029/2008GL035133.CrossRefGoogle Scholar
  45. Sakaguchi, Y. (1989): Some pollen records from Hokkaido and Sakhalin. Bull. Dpt. Geography, Univ. Tokyo, 21, 1–17.Google Scholar
  46. Sawada, K., N. Handa and T. Nakatsuka (1998): Production and transport of long-chain alkenones and alkyl alkenoates in a sea water column in the northwestern Pacific off central Japan. Mar. Chem., 59, 219–234.CrossRefGoogle Scholar
  47. Seki, O., K. Kawamura, T. Nakatsuka, K. Ohnishi, M. Ikehara and M. Wakatsuchi (2003): Sediment core profiles of long-chain n-alkanes in the Sea of Okhotsk: Enhanced transport of terrestrial organic matter from the last deglaciation to the early Holocene. Geophys. Res. Lett., 30, 1001.CrossRefGoogle Scholar
  48. Seki, O., K. Kawamura, M. Ikehara, T. Nakatsuka and T. Oba (2004): Variation of alkenone sea surface temperature in the Sea of Okhotsk over the last 85 kyrs. Org. Geochem., 35, 347–354.CrossRefGoogle Scholar
  49. Ternois, Y., K. Kawamura, L. Keigwin, N. Ohkouchi and T. Nakatsuka (2001): A biomarker approach for assessing marine and terrigenous inputs to the sediments of Sea of Okhotsk for the last 27,000 years. Geochim. Cosmochim. Acta, 65, 791–802.CrossRefGoogle Scholar
  50. Thompson, P. R. and N. J. Shackleton (1980): North Pacific paleoceanography: late Quaternary coiling variations of planktonic foraminifer Neogloboquadrina pachyderma. Nature, 287, 829–833.CrossRefGoogle Scholar
  51. Usui, T., S. Nagao, M. Yamamoto, K. Suzuki, I. Kudo, S. Montani, A. Noda and M. Minagawa (2006): Distribution and sources of organic matter in surficial sediments on the shelf and slope off Tokachi, western North Pacific, inferred from C and N stable isotopes and C/N ratios. Mar. Chem., 98, 241–259.CrossRefGoogle Scholar
  52. Yamamoto, M. (2004): Data report: Organic carbon, and alkenone sea-surface temperature from Sites 1175, 1176, and 1178, Nankai Trough. Proc. ODP, Sci. Res., 190,196, 1–10.Google Scholar
  53. Yamamoto, M. (2009): Response of mid-latitude North Pacific surface temperatures to orbital forcing and linkage to the East Asian summer monsoon and tropical ocean-atmosphere interactions. J. Quat. Sci. (in press).Google Scholar
  54. Yamamoto, M., M. Yamamuro and R. Tada (2000): Late Quaternary records of organic carbon, calcium carbonate and biomarkers from Site 1016 off Point Conception, California margin. Proc. ODP, Sci. Res., 167, 183–194.Google Scholar
  55. Yamamoto, M., H. Kayanne and M. Yamamuro (2001): Characteristics of organic matter in lagoonal sediments from the Great Barrier Reef. Geochem. J., 35, 385–401.Google Scholar
  56. Yamamoto, M., T. Oba, J. Shimamune and T. Ueshima (2004): Orbital-scale anti-phase variation of sea surface temperature in mid-latitude North Pacific margins during the last 145,000 years. Geophys. Res. Lett., 31, L16311, doi:10.1029/2004GL020138.CrossRefGoogle Scholar
  57. Yamamoto, M., Y. Ichikawa, Y. Igarashi and T. Oba (2005a): Late Quaternary variation of lignin composition in Core MD012421 off central Japan, NW Pacific. Palaeogeogr., Palaeoclimatol., Palaeoecol., 229, 179–186.CrossRefGoogle Scholar
  58. Yamamoto, M., R. Suemune and T. Oba (2005b): Equatorward shift of the subarctic boundary in the northwestern Pacific during the last deglaciation. Geophys. Res. Lett., 32, L05609, doi:10.1029/2004GL0201903.CrossRefGoogle Scholar
  59. Yamamoto, M., A. Shimamoto, T. Fukuhara, H. Naraoka, Y. Tanaka and A. Nishimura (2007): Seasonal and depth variations in molecular and isotopic alkenone composition of sinking particles from the western North Pacific. Deep-Sea Res. I, 54, 1571–1592.CrossRefGoogle Scholar
  60. Yamamoto, S. (2000): A basic investigation for high resolution analysis of paleo-climatic changes by the tetramethyl ammonium hydroxide (TMAH) method. Bull. Faculty Education, Soka Univ., 49, 61–78 (in Japanese).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Masaki Inagaki
    • 1
  • Masanobu Yamamoto
    • 1
  • Yaeko Igarashi
    • 2
  • Ken Ikehara
    • 3
  1. 1.Faculty of Environmental Earth ScienceHokkaido UniversitySapporoJapan
  2. 2.Institute for Paleoenvironment of Northern RegionsKoyocho, KitahiroshimaJapan
  3. 3.Geological Survey of JapanAISTTsukuba, IbarakiJapan

Personalised recommendations