Journal of Oceanography

, Volume 65, Issue 5, pp 703–720 | Cite as

Seasonal and interannual variability of carbon cycle in South China Sea: A three-dimensional physical-biogeochemical modeling study

  • Fei Chai
  • Guimei Liu
  • Huijie Xue
  • Lei Shi
  • Yi Chao
  • Chun-Mao Tseng
  • Wen-Chen Chou
  • Kon-Kee Liu
Original Articles


The South China Sea (SCS) exhibits strong variations on seasonal to interannual time scale, and the changing Southeast Asian Monsoon has direct impacts on the nutrients and phytoplankton dynamics, as well as the carbon cycle. A Pacific basin-wide physical-biogeochemical model has been developed and used to investigate the physical variations, ecosystem responses, and carbon cycle consequences. The Pacific basin-wide circulation model, based on the Regional Ocean Model Systems (ROMS) with a 50-km spatial resolution, is driven with daily air-sea fluxes derived from the National Centers for Environmental Prediction (NCEP) reanalysis between 1990 and 2004. The biogeochemical processes are simulated with the Carbon, Si(OH)4, Nitrogen Ecosystem (CoSINE) model consisting of multiple nutrients and plankton functional groups and detailed carbon cycle dynamics. The ROMS-CoSINE model is capable of reproducing many observed features and their variability over the same period at the SouthEast Asian Time-series Study (SEATS) station in the SCS. The integrated air-sea CO2 flux over the entire SCS reveals a strong seasonal cycle, serving as a source of CO2 to the atmosphere in spring, summer and autumn, but acting as a sink of CO2 for the atmosphere in winter. The annual mean sea-to-air CO2 flux averaged over the entire SCS is +0.33 moles CO2 m−2year−1, which indicates that the SCS is a weak source of CO2 to the atmosphere. Temperature has a stronger influence on the seasonal variation of pCO2 than biological activity, and is thus the dominant factor controlling the oceanic pCO2 in the SCS. The water temperature, seasonal upwelling and Kuroshio intrusion determine the pCO2 differences at coast of Vietnam and the northwestern region of the Luzon Island. The inverse relationship between the interannual variability of Chl-a in summer near the coast of Vietnam and NINO3 SST (Sea Surface Temperature) index in January implies that the carbon cycle and primary productivity in the SCS is teleconnected to the Pacific-East Asian large-scale climatic variability.


Carbon cycle South China Sea physical-biogeochemical modeling seasonal and interannual variability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bates, N. R. (2001): Interannual variability of oceanic CO2 and biogeochemical properties in the Western North Atlantic subtropical gyre. Deep-Sea Res. II, 48, 1507–1528, doi:10.1016/S0967-0645(00)00151-X.CrossRefGoogle Scholar
  2. Bates, N. R. (2006): Air-sea CO2 fluxes and the continental shelf pump of carbon in the Chukchi Sea adjacent to the Arctic Ocean. J. Geophys. Res., 111, C10013, doi:10.1029/2005JC003083.CrossRefGoogle Scholar
  3. Bates, N. R., A. C. Pequignet, R. J. Johnson and N. Gruber (2002): A short-term sink for atmospheric CO2 in subtropical mode water of the North Atlantic ocean. Nature, 420(6915), 489–493.CrossRefGoogle Scholar
  4. Brix, H., N. Gruber and C. D. Keeling (2004): Interannual variability in the upper ocean carbon cycle at Station ALOHA, Hawaii. Global Biogeochem. Cycles, 18, GB4019, doi:10.1029/2004GB002245.CrossRefGoogle Scholar
  5. Cai, W. J., M. H. Dai, Y. C. Wang, W. D. Zhai, T. Huang, S. T. Chen, F. Zhang, Z. Z. Chen and Z. H. Wang (2004): The biogeochemistry of inorganic carbon and nutrients in the Pearl River estuary and the adjacent Northern South China Sea. Cont. Shelf Res., 24, 1301–1319.CrossRefGoogle Scholar
  6. Cai, W. J., M. Dai and Y. Wang (2006): Air-sea exchange of carbon dioxide in ocean margins: A province-based synthesis. Geophys. Res. Lett., 33, L12603, doi:10.1029/2006GL026219.CrossRefGoogle Scholar
  7. Chai, F., R. T. Barber and S. T. Lindley (1996): Origin and maintenance of high nutrient condition in the Equatorial Pacific. Deep-Sea Res. II, 42(4–6), 1031–1064.CrossRefGoogle Scholar
  8. Chai, F., H. Xue and M. Shi (2001): General circulation and its seasonal variation in the Northern and Central South China Sea. p. 39–56. In Oceanography in China (13)—South China Sea Circulation Modeling and Observations, ed. by H. Xue, F. Chai and J. Xu, China Ocean Press, Beijing.Google Scholar
  9. Chai, F., R. C. Dugdale, T.-H. Peng, F. P. Wilkerson and R. T. Barber (2002): One dimensional ecosystem model of the Equatorial Pacific upwelling system, Part I: Model development and silicon and nitrogen cycle. Deep-Sea Res. II, 49(13–14), 2713–2745.CrossRefGoogle Scholar
  10. Chai, F., M. Jiang, R. T. Barber, R. C. Dugdale and Y. Chao (2003): Interdecadal variation of the Transition Zone Chlorophyll Front, a physical-biological model simulation between 1960 and 1990. J. Oceanogr., 59, 461–475.CrossRefGoogle Scholar
  11. Chai, F., M. S. Jiang, Y. Chao, R. C. Dugdale, F. Chavez and R. T. Barber (2007): Modeling responses of diatom productivity and biogenic silica export to iron enrichment in the Equatorial Pacific Ocean. Global Biogeochem. Cycles, 21, GB3S90, doi:10.1029/2006GB002804.CrossRefGoogle Scholar
  12. Chao, S. Y., P. T. Shaw and S. Y. Wu (1996): El Niño modulatin of the South China Sea circulation. Prog. Oceanogr., 38, 51–93.CrossRefGoogle Scholar
  13. Chen, C. C., F. K. Shiah, S. W. Chung and K. K. Liu (2006): Winter phytoplankton blooms in the shallow mixed layer of the South China Sea enhanced by upwelling. J. Mar. Sys., 59(1-2), 97–110.CrossRefGoogle Scholar
  14. Chen, C. T. A. (2004): Exchanges of carbon in the coastal seas. p. 341–350. In The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World, ed. by C. B. Field and M. R. Raupach, Island Press, Washington, D.C.Google Scholar
  15. Chen, C. T. A., S.-L. Wang, B.-J. Wang and S.-C. Pai (2001): Nutrients budgets for the South China Sea basin. Mar. Chem., 75, 281–300.CrossRefGoogle Scholar
  16. Chen, Y. L. L. (2005): Spatial and seasonal variation of nitrate-based new production and primary production in the South China Sea. Deep-Sea Res. I, 52, 319–340.CrossRefGoogle Scholar
  17. Chou, W. C., D. D. D. Sheu, C. T. A. Chen, S. L. Wang and C. M. Tseng (2005): Seasonal variability of carbon chemistry at the SEATS Time-Series Site, northern South China Sea between 2002 and 2003. Terr. Atmos. Oceanic Sci. (TAO), 16(2), 445–465.Google Scholar
  18. Chou, W. C., D. D. Sheu, B. S. Lee, C. M. Tseng, C. T. A. Chen, S. L. Wang and G. T. F. Wong (2007): Depth distributions of alkalinity, TCO2 and δ 13CTCO 2 at SEATS time-series site in the northern South China Sea. Deep-Sea Res. II, 54(14–15), 1469–1485.CrossRefGoogle Scholar
  19. Chu, P. C. and C. W. Fan (2001): A low salinity cool-core cyclonic eddy detected northwest of Luzon during the South China Sea Monsoon Experiment (SCSMEX) in July 1998. J. Oceanogr., 57, 549–563.CrossRefGoogle Scholar
  20. Dai, M. H., W. D. Zhai, Z. M. Lu, P. H. Cai, W. J. Cai and H. S. Hong (2004): Regional studies of carbon in China—progress and perspectives. Adv. Earth Sci., 19(1), 120–130 (in Chinese).Google Scholar
  21. Dore, J. E., R. Lukas, D. W. Sadler and D. M. Karl (2003): Climate-driven changes to the atmospheric CO2 sink in the subtropical North Pacific Ocean. Nature, 424, 754–757.CrossRefGoogle Scholar
  22. Dugdale, R. C., R. T. Barber, F. Chai, T. H. Peng and F. P. Wilkerson (2002): One dimensional ecosystem model of the Equatorial Pacific upwelling system, Part II: Sensitivity analysis and comparison with JGOFS EqPac data. Deep-Sea Res. II, 49(13–14), 2746–2762.Google Scholar
  23. Dugdale, R. C., F. P. Wilkerson, F. Chai and R. Feely (2007): Size-fractionated nitrogen uptake measurements in the Equatorial Pacific and confirmation of the low Si-high-nitrate low-chlorophyll condition. Global Biogeochem. Cycles, 21, GB2005, doi:10.1029/2006GB002722.CrossRefGoogle Scholar
  24. Fang, G., D. Susanto, I. Soesilo, Q. Zheng, F. Qiao and Z. Wei (2005): A note on the South China Sea shallow interocean circulation. Adv. Atmos. Sci., 22(6), 946–954.CrossRefGoogle Scholar
  25. Fang, G., H. Chen, Z. Wei, Y. Wang, X. Wang and C. Li (2006): Trends and interannual variability of the South China Sea surface winds, surface height, and surface temperature in the recent decade. J. Geophys. Res., 111, C11S16, doi:10.1029/2005JC003276.CrossRefGoogle Scholar
  26. Feely, R. A., C. L. Sabine, T. Takahashi and R. Wanninkhof (2001): Uptake and storage of carbon dioxide in the ocean: The global CO2 survey. Oceanography, 14(4), 18–32.Google Scholar
  27. Fletcher, M., N. Gruber, A. R. Jacobson, S. C. Doney, S. Dutkiewicz, M. Gerber, M. Follows, F. Joos, K. Lindsay, D. Menemenlis, A. Mouchet, S. A. Muller and J. L. Sarmiento (2006): Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean. Global Biogeochem. Cycles, 20, GB2002, doi:10.1029/2005GB002530.CrossRefGoogle Scholar
  28. Geider, R. J., H. L. MacIntyre and T. M. Kana (1998): A dynamic regulatory model of phytoplankton acclimation to light, nutrients and temperature. Limnol. Oceanogr., 43, 679–694.CrossRefGoogle Scholar
  29. Gong, G. C., K. K. Liu, C. T. Liu and S. C. Pai (1992): The chemical hydrography of the South China Sea west of Luzon and a comparison with the West Philippine Sea. Terr. Atmos. Oceanic Sci., 3, 587–602.Google Scholar
  30. González-Dávila, M., J. M. Santana-Casiano, M. Rueda, O. Llinás and E. González-Dávila (2003): Seasonal and interannual variability of sea-surface carbon dioxide species at the European Station for Time Series in the Ocean at the Canary Islands (ESTOC) between 1996 and 2000. Global Biogeochem. Cycles, 17(3), 1076, doi:10.1029/2002GB001993.CrossRefGoogle Scholar
  31. Gruber, N., C. D. Keeling and N. R. Bates (2002): Interannual variability in the North Atlantic Ocean carbon sink. Science, 298, 2374–2378.CrossRefGoogle Scholar
  32. Gypens, N., C. Lancelot and A. V. Borges (2004): Carbon dynamics and CO2 air-sea exchanges in the eutrophied coastal waters of the southern bight of the North Sea: a modeling study. Biogeosciences Discussions, 1, 561–589.Google Scholar
  33. Jahnke, R. A. (2009): Global synthesis. In Carbon and Nutrient Fluxes in Continental Margins: A Global Synthesis, ed. by K.-K. Liu, L. Atkinson, R. Quiõnes and L. Talaue-McManus, Springer, Berlin (in press).Google Scholar
  34. Jiang, M. S. and F. Chai (2005): Physical and biological controls on the asymmetry of surface nutrients and pCO2 in the central and eastern Equatorial Pacific. J. Geophys. Res., 110, C06007, doi:10.1029/2004JC002715.CrossRefGoogle Scholar
  35. Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, A. Leetma, R. Reynolds, R. Jenne and D. Joseph (1996): The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteor. Soc., 77, 437–471.CrossRefGoogle Scholar
  36. Karl, D. M. and R. Lukas (1996): The Hawaii Ocean Timeseries (HOT) program: Background, rationale and field implementation. Deep-Sea Res. II, 43, 129–156.CrossRefGoogle Scholar
  37. Keeling, C. D., H. Brix and N. Gruber (2004): Seasonal and long-term dynamics of the upper ocean carbon cycle at Sta tion ALOHA near Hawaii. Global Biogeochem. Cycles, 18, GB4006, doi:10.1029/2004GB002227.CrossRefGoogle Scholar
  38. Kuo, N. J., Q. A. Zheng and C. R. Ho (2004): Response of Vietnam coastal upwelling to the 1997–1998 ENSO event observed by multisensor data. Rem. Sens. Environ., 89, 106–115.CrossRefGoogle Scholar
  39. Large, W. and S. Pond (1982): Sensible and latent heat flux measurements over the ocean. J. Phys. Oceanogr., 12, 464–482.CrossRefGoogle Scholar
  40. Large, W. G., J. C. McWilliams and S. C. Doney (1994): Oceanic vertical mixing: a review and a model with a non-local K-profile boundary layer parameterization. Rev. Geophys., 32, 363–403.CrossRefGoogle Scholar
  41. Liu, G. and F. Chai (2009a): Seasonal and interannual variation of physical and biological processes during 1994–2001 in the Sea of Japan/East Sea: a three-dimensional physical-biogeochemical modeling study. J. Mar. Sys., doi:10.1016/j.jmarsys.2009.02011.Google Scholar
  42. Liu, G. and F. Chai (2009b): Seasonal and interannual variability of primary and export production in the South China Sea: A three-dimensional physical-biogeochemical model study. ICES J. Mar. Sci., 66, 420–431.CrossRefGoogle Scholar
  43. Liu, K.-K., S.-Y. Chao, P.-T. Shaw, G.-C. Gong, C.-C. Chen and T.-Y. Tang (2002): Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study. Deep-Sea Res. I, 49, 1387–1412.CrossRefGoogle Scholar
  44. Liu, K.-K., Y.-J. Chen, C.-M. Tseng, I.-I. Lin, H.-B. Liu and A. Snidvongs (2007a): The significance of phytoplankton photo-adaptation and benthic-pelagic coupling to primary production in the South China Sea: Observations and numerical investigations. Deep-Sea Res. II, 54(14–15), 1546–1574.CrossRefGoogle Scholar
  45. Liu, K.-K., S.-J. Kao, H.-C. Hu, W.-C. Chou, G.-W. Hung and C.-M. Tseng (2007b): Carbon isotopic composition of suspended and sinking particulate organic matter in the northern South China Sea—From production to deposition. Deep-Sea Res. II, 54(14–15), 1504–1527.CrossRefGoogle Scholar
  46. Liu, K.-K., C.-M. Tseng, C.-R. Wu and I.-I. Lin (2009): South China Sea. In Carbon and Nutrient Fluxes in Continental Margins: A Global Synthesis, ed. by K. K. Liu, L. Atkinson, R. Quiñones and L. Talaue-McManus, Springer, Berlin (in press).Google Scholar
  47. McKinley, G. A., T. Takahashi, E. Buitenhuis, F. Chai, J. R. Christian, S. C. Doney, M.-S. Jiang, K. Lindsay, J. K. Moore, C. Le Quéré, I. Lima, R. Murtugudde, L. Shi and P. Wetzel (2006): North Pacific carbon cycle response to climate variability on seasonal to decadal timescales. J. Geophys. Res., 111, C07S06, doi:10.1029/2005JC003173.CrossRefGoogle Scholar
  48. Metzger, E. J. and H. E. Hurlburt (1996): Coupled dynamics of the South China Sea, the Sulu Sea, and the Pacific Ocean. J. Geophys. Res., 101(C5), 12331–12352.CrossRefGoogle Scholar
  49. Ocean Climate Laboratory National Oceanographic Data Center (2002): World Ocean Atlas 2001.
  50. Rehder, G. and E. Suess (2001): Methane and pCO2 in Kuroshio and the South China Sea during maximum summer surface temperatures. Mar. Chem., 75(1), 89–109.CrossRefGoogle Scholar
  51. Sabine, C. L., R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. R. Wallace, B. Tilbrook, F. J. Millero, T.-H. Peng, A. Kozyr, T. Ono and A. F. Rios (2004): The oceanic sink for anthropogenic CO2. Science, 305(5682), 367–371.CrossRefGoogle Scholar
  52. Shaw, P.-T., S.-Y. Chao, K.-K. Liu, S.-C. Pai and C.-T. Liu (1996): Winter upwelling off Luzon in the northeastern South China Sea. J. Geophys. Res., 101(C7), 16435–16448.CrossRefGoogle Scholar
  53. Shchepetkin, A. and J. C. McWilliams (1998): Quasi-monotone advection schemes based on explicit locally adaptive dissipation. Month. Wea. Rev., 126, 1541–1580.CrossRefGoogle Scholar
  54. Shchepetkin, A. F. and J. C. McWilliams (2003): A method for computing horizontal pressure-gradient force in an ocean model with a non-aligned vertical coordinate. J. Geophys. Res., 108, 35.1–35.34.CrossRefGoogle Scholar
  55. Straub, K. H., G. N. Kiladis and P. E. Ciesielski (2006): The role of equatorial waves in the onset of the South China Sea summer monsoon and the demise of El Niño during 1998. Dyn. Atmos. Oceans, 42, 216–238.CrossRefGoogle Scholar
  56. Su, J. L. (2004): Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary. Cont. Shelf Res., 24, 1745–1760.CrossRefGoogle Scholar
  57. Takahashi, T., S. C. Sutherland, C. Sweeney, A. Poisson, N. Metzl, B. Tillbrook, N. Bates, R. Wanninkhof, R. A. Feely, C. Sabine, J. Olafsson and Y. Nojiri (2002): Global air-sea CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Res. II, 49(9–10), 1601–1623.CrossRefGoogle Scholar
  58. Takahashi, T., S. C. Sutherland, R. A. Feely and C. E. Cosca (2003): Decadal variation of the surface water pCO2 in the western and central Equatorial Pacific. Science, 302(5646), 852–856, DOI:10.1126/science.1088570.CrossRefGoogle Scholar
  59. Takahashi, T., S. C. Sutherland, R. A. Feely and R. Wanninkhof (2006): Decadal change of the surface water pCO2 in the North Pacific: A synthesis of 35 years of observations. J. Geophys. Res., 111, C07S05, doi:10.1029/2005JC003074.CrossRefGoogle Scholar
  60. Takano, K., A. Harashima and T. Namba (1998): A numerical simulation of the circulation in the South China Sea—preliminary results. Acta Oceanogr. Taiwanica, 37(2), 165–185.Google Scholar
  61. Thomas, H., Y. Bozec, K. Elkalay and H. De Baar (2004): Enhanced open ocean storage of CO2 from shelf sea pumping. Science, 304, 1005–1008.CrossRefGoogle Scholar
  62. Tseng, C.-M., G. T. F. Wong, I.-I. Lin, W.-C. Chou and K.-K. Liu (2005): A unique seasonal pattern in phytoplankton biomass in low-latitude waters in the South China Sea. Geophys. Res. Lett., 32, L08608, doi:10.1029/2004GL022111.CrossRefGoogle Scholar
  63. Tseng, C.-M., G. T. F. Wong, W.-C. Chou, B.-S. Lee, D.-D. Sheu and K.-K. Liu (2007): Temporal variations in the carbonate system in the upper layer at the SEATS station. Deep-Sea Res. II, 54(14–15), 1448–1468.CrossRefGoogle Scholar
  64. Tseng, C.-M., G.-C. Gong, L.-W. Wang, K.-K. Liu and Y. Yang (2009): Anomalous biogeochemical conditions in the northern South China Sea during the El-Niño events between 1997 and 2003. Geophys. Res. Lett., 36, L14611, doi:10.1029/2009GL038252.CrossRefGoogle Scholar
  65. Wang, S. L., C. T. A. Chen, G. H. Hong and C. S. Chung (2005): Carbon-dioxide and related parameters in the East-China-Sea. Cont. Shelf Res., 20, 525–544.CrossRefGoogle Scholar
  66. Wang, X. and Y. Chao (2004): Simulated sea surface salinity variability in the tropical Pacific. Geophys. Res. Lett., 31, L02302, doi:10.1029/2003GL018146.CrossRefGoogle Scholar
  67. Wong, G. T. F., T.-L. Ku, M. Mulholland, C.-M. Tseng and D.-P. Wang (2007): The SouthEast Asian Time-series Study (SEATS) and the biogeochemistry of the South China Sea—An overview. Deep-Sea Res. II, 54(14–15), 1434–1447.CrossRefGoogle Scholar
  68. Wu, C. R. and T. L. Chiang (2007): Mesoscale eddies in the northern South China Sea. Deep-Sea Res. II, 54, 1575–1588.CrossRefGoogle Scholar
  69. Wu, C. R., P. T. Shaw and S. Y. Chao (1998): Seasonal and interannual variations in the velocity field of the South China Sea. J. Oceanogr., 54, 361–372.CrossRefGoogle Scholar
  70. Xie, S. P., Q. Xie, D. X. Wang and W. T. Liu (2003): Summer upwelling in the South China Sea and its role in regional climate variations. J. Geophys. Res., 108(C8), 3261, doi:2003JC001867.CrossRefGoogle Scholar
  71. Xue, H., F. Chai, N. R. Pettigrew, D. Xu, M. Shi and J. Xu (2004): Kuroshio intrusion and the circulation in the South China Sea. J. Geophys. Res., 109, C02017, doi:10.1029/2002JC001724.CrossRefGoogle Scholar
  72. Zhai, W. D., M. H. Dai, W. J. Cai, Y. C. Wang and Z. H. Wang (2005a): High partial pressure of CO2 and its maintaining mechanism in a subtropical estuary: the Pearl River estuary, China. Mar. Chem., 93, 21–32.CrossRefGoogle Scholar
  73. Zhai, W. D., M. H. Dai, W. J. Cai, Y. C. Wang and H. S. Hong (2005b): The partial pressure of carbon dioxide and air-sea fluxes in the northern South China Sea in spring, summer and autumn. Mar. Chem., 96, 87–97.CrossRefGoogle Scholar
  74. Zhang, Y. H., Z. Q. Huang, W. Q. Wang et al. (2000): A study carbon dioxide in Taiwan Strait. J. Oceanogr. in Taiwan Strait, 19(2), 163–169 (in Chinese).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Fei Chai
    • 1
  • Guimei Liu
    • 1
    • 2
  • Huijie Xue
    • 1
  • Lei Shi
    • 1
  • Yi Chao
    • 3
  • Chun-Mao Tseng
    • 4
  • Wen-Chen Chou
    • 5
  • Kon-Kee Liu
    • 6
  1. 1.School of Marine SciencesUniversity of MaineOronoUSA
  2. 2.National Marine Environmental Forecasting CenterState Oceanic AdministrationBeijingChina
  3. 3.California Institute of TechnologyJet Propulsion LaboratoryPasadenaUSA
  4. 4.Institute of OceanographyNational Taiwan UniversityTaipeiTaiwan
  5. 5.Institute of Marine Environmental Chemistry and EcologyNational Taiwan Ocean UniversityKeelungTaiwan
  6. 6.Institute of Hydrological and Oceanic SciencesNational Central UniversityJhongliTaiwan

Personalised recommendations