Journal of Oceanography

, 65:665 | Cite as

A wave averaged energy equation: Comment on “global estimates of wind energy input to subinertial motions in the Ekman-Stokes layer” by Bin Liu, Kejian Wu and Changlong Guan

  • Jeff A. Polton


In a recent paper, Liu et al. (2007) formulate an expression for how surface gravity waves modify the Ekman layer energy budget. They then diagnose the effect in the world oceans using available data. This comment addresses the formulation of the energy equation that is fundamental to their study.


Wave energy input Ekman layer Hasselmann force 


  1. Briscoe, M. G. and R. A. Weller (1984): Preliminary results from the Long-Term Upper-Ocean Study (LOTUS). Dyn. Atmos. Oceans, 8, 243–265.CrossRefGoogle Scholar
  2. Chereskin, T. K. (1995): Direct evidence for an Ekman balance in the California Current. J. Geophys. Res., 100, 18261–18269.CrossRefGoogle Scholar
  3. Hasselmann, K. (1970): Wave-driven inertial oscillations. Geophys. Fluid Dyn., 1, 463–502.CrossRefGoogle Scholar
  4. Huang, N. E. (1979): On surface drift currents in the ocean. J. Fluid Mech., 91, 191–208.CrossRefGoogle Scholar
  5. Lenn, Y.-D. and T. K. Chereskin (2009): Observations of Ekman currents in the Southern Ocean. J. Phys. Oceanogr., 39, 768–779.CrossRefGoogle Scholar
  6. Liu, B., K. Wu and C. Guan (2007): Global estimates of wind energy input to subinertial motions in the Ekman-Stokes layer. J. Oceanogr., 63, 457–466.CrossRefGoogle Scholar
  7. Phillips, O. M. (1977): Dynamics of the Upper Ocean. Cambridge University Press, 336 pp.Google Scholar
  8. Polton, J. A., D. M. Lewis and S. E. Belcher (2005): The role of wave-induced Coriolis-Stokes forcing on the wind-driven mixed layer. J. Phys. Oceanogr., 35, 444–457.Google Scholar
  9. Price, J. F. and M. A. Sundermeyer (1999): Stratified Ekman layers. J. Geophys. Res., 104, 20467–20494.CrossRefGoogle Scholar
  10. Price, J. F., R. A. Weller and R. R. Schudlich (1987): Winddriven ocean currents and Ekman transport. Science, 238, 1534–1538.CrossRefGoogle Scholar
  11. Stokes, G. G. (1847): On the theory of oscillatory waves. Trans. Camb. Phil. Soc., 8, 441–455.Google Scholar
  12. Weber, J. E. (1990): Eulerian versus Lagrangian approach to wave-drift in a rotating ocean. Acta Geophys., 3, 155–170, kungl. Vetenskaps-och Vitterhets-Samhället, Göteborg. Ed. P. Lundberg.Google Scholar
  13. Xu, Z. and A. J. Bowen (1994): Wave- and wind-driven flow in water of finite depth. J. Phys. Oceanogr., 24, 1850–1866.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Proudman Oceanographic LaboratoryJoseph Proudman BuildingLiverpoolUK

Personalised recommendations