Advertisement

Journal of Oceanography

, 65:397 | Cite as

Radionuclides as tracers of water fronts in the South Indian Ocean—ANTARES IV Results

  • Sang-Han Lee
  • Pavel P. Povinec
  • Janine Gastaud
  • Beniamino Oregioni
  • Laurent Coppola
  • Catherine Jeandel
Original Articles

Abstract

Anthropogenic 90Sr, 239,240Pu and 241Am were used as tracers of water mass circulation in the Crozet Basin of the South Indian Ocean, represented by three main water fronts—Agulhas (AF), Subtropical (STF) and Subantarctic (SAF). Higher 90Sr concentrations observed north of 43°S were due to the influence of AF and STF, which are associated with the south branch of the Subtropical gyre, which acts as a reservoir of radionuclides transported from the North to the South Indian Ocean. On the other hand, the region south of 43°S has been influenced by SAF, bringing to the Crozet Basin Antarctic waters with lower radionuclide concentrations. The 238Pu/239,240Pu activity ratios observed in water and zooplankton samples indicated that, even 35 years after the injection of 238Pu to the Indian Ocean from the burn-up of the SNAP-9A satellite, the increased levels of 238Pu in surface water and zooplankton are still well visible. The radionuclide concentrations in seawater and their availability to zooplankton are responsible for the observed 210Po, 239,240Pu and 241Am levels in zooplankton.

Keywords

Anthropogenic radionuclides seawater profile zooplankton ANTARES IV Crozet Basin South Indian Ocean 

References

  1. Aarkrog, A., M. S. Baxter, A. O. Bettencourt, R. Bojanovski, A. Bologa, S. Charmasson, I. Cunha, R. Delfanti, E. Duran, E. Holm, R. Jeffree, H. D. Livingston, S. Mahapanyawong, H. Nies, I. Osvath, L. Pingyu, P. P. Povinec, J.-A. Sanchez-Cabeza, J. N. Smith and D. A. Swift (1997): A comparison of doses from 137Cs and 210Po in marine food: a major international study. J. Environ. Radioact., 34, 69–90.CrossRefGoogle Scholar
  2. Bayer, R. and P. Schlosser (1991): Tritium profiles in the Weddell Sea. Mar. Chem., 35, 123–136.Google Scholar
  3. Belkin, I. M. and A. L. Gordon (1996): Southern Ocean fronts from the Greenwich meridian to Tasmania. J. Geophys. Res., 101, 3675–3696.CrossRefGoogle Scholar
  4. Bhushan, R., K. Dutta, S. Mulsow, P. P. Povinec and B. L. K. Somayajulu (2003): Distribution of natural and man-made radionuclides during the reoccupation of GEOSECS stations 413 and 416 in the Arabian Sea: temporal changes. Deep-Sea Res. II, 50, 2777–2784.CrossRefGoogle Scholar
  5. Bowen, V. T., V. E. Noshkin, H. D. Livingston and H. L. Volchok (1980): Fallout radionuclides in the Pacific Ocean: Vertical and horizontal distributions, largely from GEOSECS stations. Earth Planet. Sci. Lett., 49, 411–434.CrossRefGoogle Scholar
  6. Broecker, W. S. and T.-H. Peng (1982): Tracers in the Sea. Eldigio Press, New York, 690 pp.Google Scholar
  7. Broecker, W. S., T.-H. Peng and G. Ostlund (1986): The distribution of bomb tritium in the ocean. J. Geophys. Res., 9, 14331–14344.CrossRefGoogle Scholar
  8. Cherry, M. I., R. D. Cherry and M. Heyraud (1987): Polonium-210 and lead-210 in Antarctic marine biota and seawater. Mar. Biol., 96, 441–449.CrossRefGoogle Scholar
  9. Coppola, L., M. Roy-Barman, S. Mulsow, P. P. Povinec and C. Jeandel (2005): Low particulate organic carbon export in the frontal zone of the Southern Ocean (Indian Sector) revealed by 234Th. Deep-Sea Res. I, 52, 51–68.Google Scholar
  10. Coppola, L., M. Roy-Barman, S. Mulsow, P. P. Povinec and C. Jeandel (2006): Thorium isotopes as tracers of particle dynamics and deep water circulation in the Indian sector of the Southern Ocean (ANTARES IV). Mar. Chem., 100, 299–313.CrossRefGoogle Scholar
  11. DeMaster, D. J. (2002): The accumulation and cycling of biogenic silica in the Southern Ocean: revisiting the marine silica budget. Deep-Sea Res. II, 49, 3155–3167.CrossRefGoogle Scholar
  12. Epstein, S. and T. Mayeda (1953): Variation of 18O content of waters from natural sources. Geochim. Cosmochim. Acta, 4, 213–224.CrossRefGoogle Scholar
  13. Fowler, S. W., S. Ballestra, J. La Rosa and R. Fukai (1983): Vertical transport of particulate-associated plutonium and americium in the upper water column of the Northeast Pacific. Deep-Sea Res., 30, 1221–1223.CrossRefGoogle Scholar
  14. Gaillard, J. F. (1997): ANTARES-I: a biogeochemical study of the Indian sectors of the Southern Ocean. Deep-Sea Res. II, 44, 951–961.CrossRefGoogle Scholar
  15. Gambéroni, L., J. Géronimi, P. F. Jeannin and J. F. Murail (1982): Study of the frontal zones in Crozet-Kerguelen region. Oceanol. Acta, 5, 289–299.Google Scholar
  16. Gonfiantini, R. (1978): Standards for stable isotope measurements in natural compounds. Nature, 271, 534–536.CrossRefGoogle Scholar
  17. Heinze, C. (2002): Assessing the importance of the Southern Ocean for natural atmospheric pCO2 variations with a global biologeochemical general circulation model. Deep-Sea Res. II, 49, 3105–3125.CrossRefGoogle Scholar
  18. Hirose, K., C. S. Kim, S. A. Yim, M. Aoyama, M. Fukusawa, K. Komura, P. P. Povinec and J.-A. Sanchez-Cabeza (2009): Vertical profiles of plutonium in the central South Pacific. Prog. Oceanogr. (submitted).Google Scholar
  19. Hong, G.-H., Y. I. Kim, S.-H. Lee, L. W. Cooper, S. M. Choe, A. V. Tkalin, T. Lee, S. H. Kim, C. S. Chung and K. Hirose (2002): 239,240Pu and 137Cs concentrations for zooplankton and nekton in the Northwest Pacific and Antarctic Oceans (1993–1996). Mar. Pollut. Bull., 44, 660–665.CrossRefGoogle Scholar
  20. Jeffrey, R. A., F. Carvalho, S. W. Fowler and J. Farber-Lorda (1997): Mechanism for enhanced uptake of radionuclides by zooplankton in French Polynesia oligotrophic waters. Environ. Sci. Technol., 31, 2584–2588.CrossRefGoogle Scholar
  21. Jia, G., C. Triulzi, F. Nonnis Marzano, M. Belli and M. Vaghi (2000): The fate of plutonium, 241Am, 90Sr and 137Cs in the Antarctic ecosystem. Antarctic Sci., 12, 141–148.CrossRefGoogle Scholar
  22. Koide, M. and E. D. Goldberg (1981): 241Pu/239,240Pu ratios in polar glaciers: Antarctica. Earth Planet. Sci. Lett., 54, 239–247.CrossRefGoogle Scholar
  23. Koide, M., R. Michel, E. D. Goldberg and M. M. Herron (1982): Characterization of radioactive fallout from pre-and post-moratorium tests to polar ice caps. Nature, 296, 544–547.CrossRefGoogle Scholar
  24. La Rosa, J., W. C. Burnett, S.-H. Lee, I. Levy, J. Gastaud and P. P. Povinec (2001): Separation of actinides, cesium and strontium from marine samples using extraction chromatography and sorbents. J. Radioanalytical Nuclear Chem., 248, 765–770.CrossRefGoogle Scholar
  25. Labat, J. P., P. Mayzaud, S. Dallot, A. Errhif, S. Razouls and S. Sabini (2002): Mesoscale distribution of zooplankton in the Sub-Antarctic Frontal system in the Indian part of the Southern Ocean: a comparison between optical plankton counter and net sampling. Deep-Sea Res. I, 49, 735–749.CrossRefGoogle Scholar
  26. Lee, S.-H., J. Gastaud, J. La Rosa, L. Liong Wee Kwong, P. P. Povinec, E. Wyse, L. K. Fifield, P. A. Hausladen, L. M. Di Tada and G. M. Santos (2001): Analysis of plutonium isotopes in marine samples by radiometric, ICP-MS and AMS techniques. J. Radioanalytical Nuclear Chem., 248, 757–764.CrossRefGoogle Scholar
  27. Lee, S.-H., P. P. Povinec, E. Wyse, M. K. Pham, G.-H. Hong, C.-S. Chung, S.-H. Kim and H.-J. Lee (2005): Distribution and inventories of 90Sr, 137Cs, 241Am and Pu isotopes in sediments of the Northwest Pacific Ocean. Mar. Geol., 216, 249–263.CrossRefGoogle Scholar
  28. León Vintró, L., P. I. Mitchell, O. M. Condren, A. B. Downes, C. Papucci and R. Delfanti (1999): Vertical and horizontal fluxes of plutonium and americium in the west Mediterranean and the Strait of Gibraltar. The Science of the Total Environment, 237/238, 77–91.CrossRefGoogle Scholar
  29. Livingston, H. D. and R. F. Anderson (1983): Large particle transport of plutonium and other fallout radionuclides to the deep ocean. Nature, 303, 228–231.CrossRefGoogle Scholar
  30. Livingston, H. D. and P. P. Povinec (2000): Anthropogenic marine radioactivity. Ocean Coast. Manage., 43, 689–712.CrossRefGoogle Scholar
  31. Livingston, H. D. and P. P. Povinec (2002): A millenium perspective on the contribution of global fallout radionuclides to ocean science. Health Phys., 82, 656–668.CrossRefGoogle Scholar
  32. Livingston, H. D., P. P. Povinec, T. Ito and O. Togawa (2001): The behaviour of plutonium in the Pacific Ocean. p. 267–292. In Plutonium in the Environment, ed. by A. Kudo, Elsevier, Amsterdam.CrossRefGoogle Scholar
  33. Mayzaud, P., V. Tirelli, A. Errhif, J. P. Labat, S. Razouls and R. Perissinotto (2002): Carbon intake by zooplankton. Importance and role of zooplankton grazing in the Indian sector of the Southern Ocean. Deep-Sea Res. II, 49, 3169–3187.CrossRefGoogle Scholar
  34. Michel, E., L. Labeyrie, J.-C. Duplessy, N. Gorfti, M. Labrachaerie and J.-L. Turon (1995): Could deep Subantarctic convection feed the world deep basins during the last glacial maximum? Paleoceanography, 10, 927–942.CrossRefGoogle Scholar
  35. Miyake, Y., K. Saruhashi, Y. Sugimura, T. Kanazawa and K. Hirose (1988): Contents of 137Cs, Plutonium and Americium isotopes in the Southern Ocean waters. Pap. Meteorol. Geophys., 39, 95–113.CrossRefGoogle Scholar
  36. Mulsow, S., P. P. Povinec, B. L. K. Somayajulu, B. Oregioni, L. Liong Wee Kwong, J. Gastaud, Z. Top and U. Morgenstern (2003): Temporal (3H) and spatial variations of 90Sr, 239,240Pu and 241Am in the Arabian Sea: GEOSECS Stations revisited. Deep-Sea Res. II, 50, 2761–2775.CrossRefGoogle Scholar
  37. Nowlin, W. D. and J. M. Klinck (1986): The physics of Antarctic Circumpolar Current. Rev. Geophys., 24, 469–491.CrossRefGoogle Scholar
  38. Park, Y. H., L. Gambéroni and E. Charriaud (1991): Frontal structure and transport of the Antarctic Circumpolar Current in the south Indian Ocean sector, 40–80°E. Mar. Chem., 35, 45–62.CrossRefGoogle Scholar
  39. Park, Y. H., L. Gamberoni and E. Charriaud (1993): Frontal structure, water masses, and circulation in the Crozet Basin. J. Geophys. Res., 98, 12361–12385.CrossRefGoogle Scholar
  40. Park, Y. H., R. T. Pollard, R. T. Pollard, J. F. Read and V. Leboucher (2002): A quasi-synoptic view of the frontal circulation in the Crozet Basin during the Antares-4 cruise. Deep-Sea Res. II, 49, 1823–1842.CrossRefGoogle Scholar
  41. Perkins, R. W. and C. W. Thomas (1980): Worldwide fallout. p. 53–82. In Transuranic Elements in the Environment, ed. by W. C. Hanson, US DOE/TIC-22800, Office of Health and Environmental Research, Washington, D.C.Google Scholar
  42. Pham, M. K., J.-A. Sanchez-Cabeza, P. P. Povinec, D. Arnold, M. Benmansour, R. Bojanowski, F. P. Carvalho, C. K. Kim, M. Esposito, J. Gastaud, C. L. Gascó, G. J. Ham, A. G. Hegde, E. Holm, D. Jaskierowicz, G. Kanisch, M. Llaurado, J. La Rosa, S.-H. Lee, L. Liong Wee Kwong, G. Le Petit, Y. Maruo, S. P. Nielsen, J.-S. Oh, B. Oregioni, J. Palomares, H. B. L. Pettersson, P. Rulik, T. P. Ryan, K. Sato, J. Scholowski, B. Skwarzec, P. A. Smedley, S. Tarján, N. Vajda and E. Wysea (2006): Certified reference material for radionuclides in fish flesh sample IAEA-414 (mixed fish from the Irish Sea and North Sea). Appl. Radiation Isotopes, 64, 1253–1259.CrossRefGoogle Scholar
  43. Pollard, R. T., M. I. Lucas and J. F. Read (2002): Physical controls on biological zonation in the Southern Ocean. Deep-Sea Res. II, 49, 3289–3305.CrossRefGoogle Scholar
  44. Povinec, P. P. (2005): Ultra-sensitive radionuclide spectrometry: Radiometrics and mass spectrometry synergy. J. Radioanalytical Nuclear Chem., 263, 413–417.Google Scholar
  45. Povinec, P. P., C. Badie, A. Baeza, G. Barci-Funel, T. D. Bergan, R. Bojanowski, W. C. Burnett, J. Eikenberg, L. K. Fifield, V. Serradell, J. Gastaud, I. Goroncy, J. Herrmann, M. A. C. Hotchkis, T. K. Ikaheimonen, E. Jakobson, J. Kalimbadjan, J. La Rosa, S. H. Lee, L. Liong Wee Kwong, W. M. Lueng, S. P. Nielsen, A. Noureddine, M. K. Pham, J.-N. Rohou, J.-A. Sanchez-Cabeza, J. Suomela, M. Suplinska and E. Wyse (2002): Certified reference material for radionuclides in seawater IAEA-381 (Irish Sea water). J. Radioanalytical Nuclear Chem., 251, 369–374.CrossRefGoogle Scholar
  46. Povinec, P. P., H. D. Livingston, S. Shima, M. Aoyama, J. Gastaud, I. Goroncy, K. Hirose, H.-N. Lang, Y. Ikeuchi, T. Ito, J. La Rosa, L. Liong Wee Kwong, S.-H. Lee, H. Moriya, S. Mulsow, B. Oregioni, H. Pettersson and O. Togawa (2003a): IAEA’97 expedition to the NW Pacific Ocean—Results of oceanographic and radionuclide investigations of the water column. Deep-Sea Res. II, 50, 2607–2637.CrossRefGoogle Scholar
  47. Povinec, P. P., R. Delfanti, J. Gastaud, J. La Rosa, U. Morgenstern, B. Oregioni, M. K. Pham, S. Salvi and Z. Top (2003b): Anthropogenic radionuclides in Indian Ocean surface waters—the Indian Ocean transect 1998. Deep-Sea Res. II, 50, 2751–2760.CrossRefGoogle Scholar
  48. Povinec, P. P., K. Hirose, T. Honda, T. Ito, E. Marian Scott and O. Togawa (2004): Spatial distribution of 3H, 90Sr, 137Cs and 239,240Pu in surface waters of the Pacific and Indian Oceans— GLOMARD database. J. Environ. Radioact., 76, 113–137.CrossRefGoogle Scholar
  49. Povinec, P. P., A. Aarkrog, K. O. Buesseler, R. Delfanti, K. Hirose, G.-H. Hong, T. Ito, H. D. Livingston, H. Nies, V. E. Noshkin, S. Shima and O. Togawa (2005): 90Sr, 137Cs, and 239,240Pu concentration surface water time series in the Pacific and Indian Oceans—WOMARS results. J. Environ. Radioact., 81, 63–87.Google Scholar
  50. Povinec, P. P., M. Betti, A. J. T. Jull and P. Vojtyla (2008): New isotope technologies for environmental physics. Acta Physica Slovaca, 58, 1–154.Google Scholar
  51. Povinec, P. P., M. Aoyama, M. Kukasawa, K. Hirose, K. Komura, J.-A. Sanchez-Cabeza, J. Gastaud, M. Ješkovský, I. Levy-Palomo and I. Sýkora (2009): Profiles of 137Cs in South Indian Ocean water along the 20°S latitude—an evidence for accumulation of pollutants in the subtropical gyre. Prog. Oceanogr. (submitted).Google Scholar
  52. Ragueneau, O., N. Dittert, P. Pondaven, P. Tréguer and L. Corrin (2002): Si/C decoupling in the world ocean: is the Southern Ocean different? Deep-Sea Res. II, 49, 3127–3154.CrossRefGoogle Scholar
  53. Roos, P., E. Holm, R. B. R. Persson, A. Aarkrog and S. P. Nielsen (1994): Deposition of 210Pb, 137Cs, 239,240Pu, 238Pu and 241Am in the Antarctic Peninsula area. J. Environ. Radioact., 24, 235–251.CrossRefGoogle Scholar
  54. Samiento, J. L. and T. R. Toggweiler (1984): A new model for the role of the oceans in determining atmospheric carbon pCO2 levels. Nature, 308, 621–624.CrossRefGoogle Scholar
  55. Sievers, H. A. and W. D. Nowlin (1984): The stratification and water masses at Drake Passage. J. Geophys. Res., 89, 10489–10514.CrossRefGoogle Scholar
  56. Taljaard, H. A. and H. van Loon (1984): Climate of the Indian Ocean south of 35°S. p. 505–601. In Climates of the Oceans, ed. by H. van Loon, Elsevier, Amsterdam.Google Scholar
  57. UNSCEAR (1993): United Nations Scientific Committee on the Effects of Atomic Radiation. United Nations, New York.Google Scholar
  58. Van Beusekom, J. E. E., A. J. van Bennekom, P. Tréguer and J. Morvan (1997): Aluminum and silicic acid in water and sediments of the Enderby and Crozet Basins. Deep-Sea Res. II, 44, 987–1003.CrossRefGoogle Scholar
  59. Weiss, W. and W. Roether (1980): The rates of tritium input to the world oceans. Earth Planet. Sci. Lett., 49, 435–436.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Sang-Han Lee
    • 1
    • 5
  • Pavel P. Povinec
    • 2
    • 5
  • Janine Gastaud
    • 3
  • Beniamino Oregioni
    • 3
  • Laurent Coppola
    • 4
  • Catherine Jeandel
    • 4
  1. 1.Korea Research Institute of Standards and ScienceDaejeonRepublic of Korea
  2. 2.Comenius University, Faculty of Mathematics, Physics and InformaticsBratislavaSlovakia
  3. 3.International Atomic Energy Agency, Marine Environment LaboratoriesMonacoMonaco
  4. 4.Laboratoire d’Etudes en Geophysique et Oceanographie SpatialesCNRS/CNES/IRD/Université de ToulouseToulouseFrance
  5. 5.International Atomic Energy Agency, Marine Environment LaboratoriesMonacoMonaco

Personalised recommendations