Journal of Oceanography

, Volume 65, Issue 2, pp 273–279 | Cite as

Observations of wind-driven deepening of the surface mixing layer in the Tsushima strait

  • Takahiro Endoh
  • Takeshi Matsuno
  • Yutaka Yoshikawa
  • Yasuto Tatsuyama
  • Joji Ishizaka
Original Articles


A detailed description of wind-driven deepening of the mixing layer in the Tsushima strait is given by combining current data from the acoustic Doppler current profiler (ADCP) attached to a satellite-tracked surface drifter, with microstructure data from the Turbulence Ocean Microstructure Acquisition Profiler (TurboMAP) deployed from a ship following the surface drifter. By collecting data in a Lagrangian manner we attempted to minimize the effect of horizontal advection. The dissipation rate of turbulent kinetic energy (TKE), ɛ, was measured directly using the TurboMAP, whereas the production rate of TKE, P, was estimated from horizontal velocities obtained using the ADCP based on the one-dimensional linear equation of motion. The TKE budget in the mixing layer is examined by applying the integrated TKE equation to the observed data. The sum of the temporal change of potential energy, shear production, dissipation, TKE flux, and the surface buoyancy flux terms changes dramatically with time, indicating the importance of the temporal change of TKE in the deepening process on a time scale shorter than one day, which is neglected in widely used bulk mixedlayer models.


Mixing layer dissipation rate of turbulent kinetic energy (TKE) production rate of TKE vertically rising microstructure profiler ADCP satellite-tracked surface drifter the Tsushima strait 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Batchelor, G. K. (1982): The Theory of Homogeneous Turbulence. 2nd ed., Cambridge University Press, Cambridge, 172 pp.Google Scholar
  2. Brainerd, K. E. and M. C. Gregg (1993): Diurnal restratification and turbulence in the oceanic surface mixed layer, 1. Observations. J. Geophys. Res., 98, 22,645–22,656.Google Scholar
  3. Brainerd, K. E. and M. C. Gregg (1995): Surface mixing and mixed layer depths. Deep-Sea Res., 42, 1521–1543.CrossRefGoogle Scholar
  4. Efimova, N. A. (1961): On methods of calculating monthly values of net longwave radiation. Meteor. Gidrol., 10, 28–33 (in Russian).Google Scholar
  5. Gargett, A. E., T. B. Sanford and T. R. Osborn (1979): Surface mixing layers in the Sargasso Sea. J. Phys. Oceanogr., 9, 1090–1111.CrossRefGoogle Scholar
  6. Gaspar, P. (1988): Modeling the seasonal cycle of the upper ocean. J. Phys. Oceanogr., 18, 161–180.CrossRefGoogle Scholar
  7. Hinze, J. O. (1987): Turbulence. 2nd ed., McGraw-Hill, New York, 586 pp.Google Scholar
  8. Hirose, N., H.-C. Lee and J.-H. Yoon (1999): Surface heat flux in the East China Sea and the Yellow Sea. J. Phys. Oceanogr., 29. 401–417.CrossRefGoogle Scholar
  9. Imberger, J. (1985): The diurnal mixed layer. Limnol. Oceanogr., 30, 737–770.Google Scholar
  10. Kim, Y.-S. and R. Kimura (1995): Error evaluation of the bulk aerodynamic method for estimating heat flux over the sea. J. Korean Meteor. Soc., 31, 399–413.Google Scholar
  11. Kondo, J. (1975): Air-sea bulk transfer coefficients in diabatic conditions. Bound.-Layer Meteor., 9, 91–112.CrossRefGoogle Scholar
  12. Kraus, E. B. and J. S. Turner (1967): A one-dimensional model of the seasonal thermocline, Part II. The general theory and its consequences. Tellus, 19, 98–105.Google Scholar
  13. Large, W. G. and S. Pond (1981): Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324–336.CrossRefGoogle Scholar
  14. Nasmyth, P. (1970): Oceanic turbulence. Ph.D. thesis, Institute of Oceanography, University of British Columbia, Vancouver, Canada, 69 pp.Google Scholar
  15. Niiler, P. P. (1975): Deepening of the wind mixed layer. J. Mar. Res., 33, 405–422.Google Scholar
  16. Niiler, P. P. and E. B. Kraus (1977): One-dimensional models of the upper ocean. p. 143–172. In Modelling and Prediction of the Upper Layers of the Ocean, ed. by E. B. Krauss, Pergamon Press, New York.Google Scholar
  17. Oppenheim, A. V., R. W. Schafer and J. R. Buck (1999): Discrete-time Signal Processing. 2nd ed., Prentice-Hall, Upper Saddle River, New Jersey, 858 pp.Google Scholar
  18. Shay, T. J. and M. C. Gregg (1986): Convectively driven turbulent mixing in the upper ocean. J. Phys. Oceanogr., 16, 1777–1798.CrossRefGoogle Scholar
  19. Spigel, R. H., J. Imberger and K. N. Rayner (1986): Modeling the diurnal mixed layer. Limnol. Oceanogr., 31, 533–556.CrossRefGoogle Scholar
  20. Thimijan, R. W. and R. D. Heins (1983): Photometric, radiometric, and quantum light units of measure, A review of procedures for interconversion. HortScience, 18, 818–822.Google Scholar
  21. Wolk, F., H. Yamazaki, L. Seuront and R. G. Lueck (2002): A new free-fall profiler for measuring biophysical microstructure. J. Atmos. Oceanic. Technol., 19, 780–793.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Takahiro Endoh
    • 1
  • Takeshi Matsuno
    • 1
  • Yutaka Yoshikawa
    • 1
  • Yasuto Tatsuyama
    • 2
  • Joji Ishizaka
    • 3
  1. 1.Research Institute for Applied MechanicsKyushu UniversityKasuga-kouen, Kasuga, FukuokaJapan
  2. 2.Machinery and Engineering Company, Kobe Steel, Ltd.Takasago, HyogoJapan
  3. 3.Faculty of FisheriesNagasaki UniversityBunkyo, NagasakiJapan

Personalised recommendations