Journal of Oceanography

, Volume 64, Issue 1, pp 39–48 | Cite as

Nitrogen isotopic discrimination by water column nitrification in a shallow coastal environment

  • Ryo Sugimoto
  • Akihide Kasai
  • Toshihiro Miyajima
  • Kouichi Fujita
Original Articles


Temporal changes in nitrogen isotopic composition (δ15N) of the NO3 pool in the water column below the pycnocline in Ise Bay, Japan were investigated to evaluate the effect of nitrification on the change in the δ15N in the water column. The δ15N of NO3 in the lower layers varied from −8.5‰ in May to +8.4‰ in July in response to the development of seasonal hypoxia and conversion from NH4 + to NO3 . The significantly 15N-depleted NO3 in May most likely arose from nitrification in the water column. The calculated apparent isotopic discrimination for water column nitrification (ɛnit = δ15Nsubstrate − δ15Nproduct) was 24.5‰, which lies within the range of previous laboratory-based estimates. Though prominent deficits of NO3 from hypoxic bottom waters due to denitrification were revealed in July, the isotopic discrimination of denitrification in the sediments was low (ɛdenit = ∼1‰). δ15NNO3 in the hypoxic lower layer mainly reflects the isotopic effect of water column nitrification, given that water column nitrification is not directly linked with sedimentary denitrification and the effect of sedimentary denitrification on the change in δ15NNO3 is relatively small.


Isotopic discrimination nitrification denitrification hypoxic waters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altabet, M. A., C. Pilskaln, R. Thunell, C. Pride, D. Sigman, F. Chavez and R. Francois (1999): The nitrogen isotope biogeochemistry of sinking particles from the margin of the Eastern North Pacific. Deep-Sea Res. I, 46, 655–679.Google Scholar
  2. Amano, T., I. Yoshinaga, K. Okada, T. Yamagishi, S. Ueda, A. Obuchi, Y. Sako and Y. Suwa (2007): Detection of anamox activity and diversity of anamox bacteria-related 16S rRNA Genes in coastal marine sediment in Japan. Microbes and Environ., 22, 232–242.CrossRefGoogle Scholar
  3. Barford, C. C., J. P. Montoya, M. A. Altabet and R. Mitchell (1999): Steady-state nitrogen isotope effects of N2 and N2O production in Paracoccus denitrificans. Applied and Environmental Microbiology, 65, 989–994.Google Scholar
  4. Berounsky, V. M. and S. W. Nixon (1990): Temperature and the annual cycle of nitrification in waters of Narragansett Bay. Limnol. Oceanogr., 35, 1610–1617.Google Scholar
  5. Brandes, J. A. and A. H. Devol (1997): Isotopic fractionation of oxygen and nitrogen in coastal marine sediments. Geochim. Cosmochim. Acta, 61, 1793–1801.CrossRefGoogle Scholar
  6. Brandes, J. A. and A. H. Devol (2002): A global marine-fixed nitrogen isotopic budget: implications for Holocene nitrogen cycling. Global Biogeochem. Cycles, 16(4), 1120, doi:10.1029/2001GB001856.CrossRefGoogle Scholar
  7. Brandes, J. A., A. H. Devol, T. Yoshinari, D. A. Jayakumar and S. W. A. Naqvi (1998): Isotopic composition of nitrate in the central Arabian Sea and eastern tropical north pacific: a tracer for mixing and nitrogen cycles. Limnol. Oceanogr., 43, 1680–1689.CrossRefGoogle Scholar
  8. Caffrey, J. M., N. P. Sloth, H. F. Kaspar and T. H. Blackburn (1993): Effect of organic loading on nitrification and denitrification in a marine sediment microcosm. FEMS Microbiology Ecology, 12, 159–167.CrossRefGoogle Scholar
  9. Caffrey, J. M., N. Harrington, I. Solem and B. B. Ward (2003): Biogeochemical processes in a small California estuary. 2. nitrification activity, community structure and role in nitrogen budgets. Mar. Ecol. Prog. Ser., 248, 27–40.CrossRefGoogle Scholar
  10. Casciotti, K. L., D. M. Sigman and B. B. Ward (2003): Linking diversity and stable isotope fractionation in ammonia-oxidizing bacteria. Geomicrobiology J., 20, 335–353.CrossRefGoogle Scholar
  11. Fujiwara, T., T. Takahashi, A. Kasai, Y. Sugiyama and M. Kuno (2002): The role of circulation in the development of hypoxia in Ise Bay, Japan. Estuar., Coast. Shelf Sci., 54, 19–31.CrossRefGoogle Scholar
  12. Guerrero, M. A. and R. D. Jones (1996): Photoinhibition of marine nitrifying bacteria. II. Dark recovery after monochromatic or polychromatic irradiation. Mar. Ecol. Prog. Ser., 141, 193–198.CrossRefGoogle Scholar
  13. Hartnett, H. E. and A. H. Devol (2003): Role of a strong oxygen-deficient zone in the preservation and degradation of organic matter: A carbon budget for the continental margins of northwest Mexico and Washington State. Geochim. Cosmochim. Acta, 67, 247–264.CrossRefGoogle Scholar
  14. Herbert, R. A. (1999): Nitrogen cycling in coastal marine ecosystems. FEMS Micobiology Reviews, 23, 563–590.CrossRefGoogle Scholar
  15. Horrigan, S. G., J. P. Montoya, J. L. Nevins and J. J. McCarthy (1990): Natural isotopic composition of dissolved inorganic nitrogen in the Chesapeake Bay. Estuar., Coast. Shelf Sci., 30, 393–410.CrossRefGoogle Scholar
  16. Jahnke, R. A. and D. B. Jahnke (2000): Rates of C, N, P and Si recycling and denitrification at the US Mid-Atlantic continental slope depocenter. Deep-Sea Res. I, 47, 1405–1428.CrossRefGoogle Scholar
  17. Jensen, M. H., E. Lomstein and J. Sørensen (1990): Benthic NH4 + and NO3 flux following sedimentation of a spring phytoplankton bloom in Aarhus Bight, Denmark. Mar. Ecol. Prog. Ser., 61, 87–96.CrossRefGoogle Scholar
  18. Kasai, A., A. E. Hill, T. Fujiwara and J. H. Simpson (2000): Effect of the Earth’s rotation on the circulation in regions freshwater influence. J. Geophys. Res., 105, 16961–16969.CrossRefGoogle Scholar
  19. Kasai, A., T. Fujiwara, J. H. Simpson and S. Kakehi (2002): Circulation and cold dome in a gulf-type ROFI. Cont. Shelf Res., 22, 1579–1590.CrossRefGoogle Scholar
  20. Kasai, A., T. Fujiwara, T. Kimura and H. Yamada (2004): Fort-nightly shifts of intrusion depth of oceanic water into Ise Bay. J. Oceanogr., 60, 817–824.Google Scholar
  21. Kemp, W. M., P. Sampou, J. Caffrey, M. Mayer, K. Henriksen and W. R. Boynton (1990): Ammonium recycling versus denitrification in Chesapeake Bay sediments. Limnol. Oceanogr., 35, 1545–1563.CrossRefGoogle Scholar
  22. Lehmann, M. F., D. M. Sigman and W. M. Berelson (2004): Coupling the 15N/14N and 18O/16O of nitrate as a constraint on benthic nitrogen cycling. Mar. Chem., 88, 1–20.CrossRefGoogle Scholar
  23. Mariotti, A., J. G. Germon, P. Hubert, P. Kaiser, R. Letolle, A. Tardieux and P. Tardieux (1981): Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes. Plant and Soil, 62, 413–430.CrossRefGoogle Scholar
  24. Naqvi, S. W. A., H. Naik, A. Prathihary, D. Souza, P. V. Narvekar, D. A. Jayakumar, A. H. Devol, T. Yoshinari and T. Saino (2006): Coastal versus open-ocean denitrification in the Arabian Sea. Biogeosciences, 3, 621–633.Google Scholar
  25. O’Mullan, G. D. and B. B. Ward (2005): Relationship of temporal and spatial variations of ammonia-oxidizing bacteria to nitrification rates in Moterey Bay, California. Applied and Environmental Microbiology, 71, 687–705.CrossRefGoogle Scholar
  26. Ostrom, N. E., S. A. Macko, D. Deibel and R. J. Thompson (1997): Seasonal variation in the stable carbon and nitrogen isotope biogeochemistry of a coastal cold ocean environment. Geochim. Cosmochim. Acta, 61, 2929–2942.CrossRefGoogle Scholar
  27. Owens, N. J. P. (1986): Estuarine nitrification: a naturally occurring fluidized bed reaction? Estuar., Coast. Shelf Sci., 22, 31–44.CrossRefGoogle Scholar
  28. Pauer, J. J. and M. T. Auer (2000): Nitrification in the water column and sediment of a hypereutrophic lake and adjoining river system. Water Research, 34, 1247–1254.CrossRefGoogle Scholar
  29. Redfield, A. C., B. H. Ketchum and F. A. Richard (1963): Chapter 2, The influence of organisms on the composition on sea-water. p. 26–77. In The Sea, Vol. 2, ed. by M. N. Hill, Inter Sci. Pub., New York and London.Google Scholar
  30. Reinhardt, M., B. Müller, R. Gächter and B. Wehrli (2006): Nitrogen removal in a small constructed wetland: an isotope mass balance approach. Environmental Science & Technology, 40, 3313–3319.CrossRefGoogle Scholar
  31. Rysgaard, S., N. Risgaard-Peterson, N. P. Sloth, K. Jensen and L. P. Nielsen (1994): Oxygen regulation of nitrification and denitrification in sediments. Limnol. Oceanogr., 39, 1643–1652.CrossRefGoogle Scholar
  32. Sebilo, M., G. Billen, B. Mayer, D. Billou, M. Grably, J Garnier and A. Mariotti (2006): Assessing nitrification and denitrification in the Seine River and estuary using chemical and isotopic techniques. Ecosystems, 9, 564–577.CrossRefGoogle Scholar
  33. Sigman, D. M., M. A. Altabet, R. Michener, D. C. McCorkle, B. Fry and R. M. Holmes (1997): Natural abundance-level measurement of the nitrogen isotopic composition of oceanic nitrate: an adaptation of the ammonia diffusion method. Mar. Chem., 57, 227–242.CrossRefGoogle Scholar
  34. Sigman, D. M., R. Robinson, A. N. Knapp, A. van Geen, D. C. McCorkle, J. A. Brandes and R. C. Thunell (2003): Distinguishing between water column and sedimentary denitrification in the Santa Barbara Basin using the stable isotopes of nitrate. Geochemistry, Geophysics, Geosystems, 4, 1040, doi:10.1029/2002GC000384.CrossRefGoogle Scholar
  35. Sugimoto, R., A. Kasai, S. Yamao, T. Fujiwara and T. Kimura (2006): Short-term variation in behavior of allocthonous particulate organic matter accompanying changes of river discharge in Ise Bay, Japan. Estuar., Coast. Shelf Sci., 66, 267–279.CrossRefGoogle Scholar
  36. Sutka, R. L., N. E. Ostrom, P. H. Ostrom and M. S. Phanikumar (2004): Stable nitrogen isotope dynamics of dissolved nitrate in a transect from the North Pacific Subtropical Gyre to the Eastern Tropical North Pacific. Geochim. Cosmochim. Acta, 68, 517–527.CrossRefGoogle Scholar
  37. Takahashi, T., T. Fujiwara, M. Kuno and Y. Sugiyama (2000): Seasonal variation in intrusion depth of oceanic water and the hypoxia in Ise Bay. Umi no Kenkyu, 9, 265–271 (in Japanese with English abstract).Google Scholar
  38. Walker, T. A. (1980): A correction to the Poole and Atkins Secchi disk/light attenuation formula. Journal of Mar. Biol. Ass. U.K., 60, 769–771.CrossRefGoogle Scholar
  39. Ward, B. B. (1996): Nitrification and denitrification: probing the nitrogen cycle in aquatic environments. Microbial Ecology, 32, 247–261.CrossRefGoogle Scholar
  40. Ward, B. B. (2005): Temporal variability in nitrification rates and related biogeochemical factors in Monterey Bay, California, USA. Mar. Ecol. Prog. Ser., 292, 97–109.CrossRefGoogle Scholar
  41. Yoshioka, T. and Y. Saijyo (1984): Photoinhibition and recovery of NH4 +-oxidizing bacteria and NO2 -oxidizing bacteria. J. Gen. Appl. Microbiol., 30, 151–166.Google Scholar
  42. Yoshioka, T. and Y. Saijyo (1985): Active nitrification in the hypolimnion on Lake Kizaki in early summer. 2. Effects of light on nitrification in water. Arch. Hydrobiol., 105, 1–9.Google Scholar

Copyright information

© The Oceanographic Society of Japan/TERRAPUB/Springer 2008

Authors and Affiliations

  • Ryo Sugimoto
    • 1
  • Akihide Kasai
    • 1
  • Toshihiro Miyajima
    • 2
  • Kouichi Fujita
    • 3
  1. 1.Graduate School of AgricultureKyoto UniversityOiwake, Kitashirakawa, Sakyo-ku, KyotoJapan
  2. 2.Ocean Research InstituteUniversity of TokyoMinimidai, Nakano-ku, TokyoJapan
  3. 3.Mie Prefectural Science and Technology Promotion CenterHamajima, Shima, MieJapan

Personalised recommendations