Advertisement

Journal of Oceanography

, Volume 63, Issue 1, pp 35–45 | Cite as

Reproductive ecology of the dominant dinoflagellate, Ceratium fusus, in coastal area of Sagami Bay, Japan

  • Seung Ho Baek
  • Shinji Shimode
  • Tomohiko Kikuchi
Original Article

Abstract

The seasonal abundance of the dominant dinoflagellate, Ceratium fusus, was investigated from January 2000 to December 2003 in a coastal region of Sagami Bay, Japan. The growth of this species was also examined under laboratory conditions. In Sagami Bay, C. fusus increased significantly from April to September, and decreased from November to February, though it was found at all times through out the observation period. C. fusus increased markedly in September 2001 and August 2003 after heavy rainfalls that produced pycnoclines. Rapid growth was observed over a salinity range of 24 to 30, with the highest specific rate of 0.59 d−1 measured under the following conditions: salinity 27, temperature 24°C, photon irradiance 600 µmol m−2s−1. The growth rate of C. fusus increased with increasing irradiance from 58 to 216 µmol m−2s−1, plateauing between 216 and 796 µmol m−2s−1 under all temperature and salinity treatments (except at a temperature of 12°C). Both field and laboratory experiments indicated that C. fusus has the ability to grow under wide ranges of water temperatures (14–28°C), salinities (20–34), and photon irradiance (50–800 µmol m−2s−1); it is also able to grow at low nutrient concentrations. This physiological flexibility ensures that populations persist when bloom conditions come to an end.

Keywords

Dinoflagellate Ceratium fusus reproductive strategy bloom growth rates Sagami Bay, Japan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baek, S. H., S. Shimode and T. Kikuchi (2006): Reproductive ecology of dominant dinoflagellate, Ceratium furca, in the coastal area of Sagami Bay. Coast. Mar. Sci., 30, 344–352.Google Scholar
  2. Bockstahler, K. R. and D. W. Coats (1993): Spatial and temporal aspects of mixotrophy in Chesapeake Bay dinoflagellates. J. Euk. Microbiol., 40, 49–60.Google Scholar
  3. Cullen, J. J. and W. G. Horrigan (1981): Effect of nitrate on the diurnal vertical migration, Carbon to nitrogen ratio, and photosynthetic capacity of the dinoflagellate Gymnodinium splendens. Mar. Biol., 62, 81–89.CrossRefGoogle Scholar
  4. Dodge, J. D. and H. G. Marshall (1994): Biogeographic analysis of the armored Planktonic dinoflagellate Ceratium in the North Atlantic and adjacent seas. J. Phycol., 30, 905–922.CrossRefGoogle Scholar
  5. Donaghay, P. L. and T. R. Osborn (1997): Toward a theory of biological-physical control of harmful algal bloom dynamics and impacts. Limnol. Oceanogr., 42, 1283–1296.CrossRefGoogle Scholar
  6. Dortch, Q. and T. E. Whitledge (1992): Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions? Cont. Shelf Res., 12, 1293–1309.CrossRefGoogle Scholar
  7. Elbrächter, M. (1973): Population dynamics of Ceratium in coastal waters of the Kiel Bay. Oikos, 15, 43–48.Google Scholar
  8. Eppley, R. W., O. Holm-Hansen and J. D. H. Strickland (1968): Some observation on the vertical migration of dinoflagellates. J. Phycol., 4, 333–340.Google Scholar
  9. Graham, H. W. (1941): An oceanographic consideration of the dinoflagellate genus Ceratium. Ecol. Monogr., 11, 99–116.CrossRefGoogle Scholar
  10. Heaney, S. I. and R. W. Eppley (1981): Light, temperature and nitrogen as interacting factor affecting diel vertical migration of dinoflagellates in culture. J. Plankton Res., 3, 331–344.Google Scholar
  11. Hogetsu, K. and N. Taga (1977): Suruga Bay and Sagami Bay. p. 31–172. In JIBP Synthesis14, Productivity of Biocenoses in Coastal Region of Japan, Vol. 14, ed. by K. Hogetsu, M. Hatanaka, T. Hanaoka and T. Kawamura, University of Tokyo Press, Tokyo.Google Scholar
  12. Holm-Hansen, O., C. J. Lorenzen, R. N. Holmes and J. D. H. Strickland (1965): Fluorometric determination of chlorophyll. J. Cons. Perm. Int. Explor. Mer., 30, 3–15.Google Scholar
  13. Horner, R. A., D. L. Garrison and F. G. Plumley (1997): Harmful algal blooms and red tide problems on the U.S. west coast. Limnol. Oceanogr., 42, 1076–1088.CrossRefGoogle Scholar
  14. Iwata, S. (1985): Chapter 10 Sagami Bay, physics. p. 401–409. In Oceanography of Japanese Islands, ed. by Oceanographical Society of Japan Coastal, Tokai University Press, Tokyo (in Japanese).Google Scholar
  15. Justic, D., N. N. Rabalais, R. E. Turner and Q. Dortch (1995): Changes in nutrient structure of river-dominated coastal waters: stoichiometric nutrient balance and its consequences. Estuar. Coast. Shelf Sci., 40, 339–356.CrossRefGoogle Scholar
  16. Li, A., D. K. Stoecker, D. W. Coats and J. E. Adam (1996): Ingestion of fluorescently-labeled and phycoerythirin-containing prey by mixotrophic dinoflagellates. Aquat. Microb. Ecol., 10, 139–147.Google Scholar
  17. Lirdwitayaprasit, T. (2003): Red tide in the inner gulf of Thailand. p. 53–56. In Workshop on Red Tide Monitoring in Asian Coastal Waters (Program and Extended Abstracts), University of Tokyo, Tokyo.Google Scholar
  18. Lu, D. (2003): Status of HAB monitoring in China with emphasis on the East China Sea. p. 30–34. In Workshop on Red Tide Monitoring in Asian Coastal Waters (Program and Extended Abstracts), University of Tokyo, Tokyo.Google Scholar
  19. Machida, M., M. Fujitomi, K. Hasegawa, T. Kudoh, M. Kai, T. Kobayashi and T. Kamiide (1999): Red tide of Ceratium furca along the Pacific coast of central Japan in 1997. Nippon Suisan Gakkaishi., 65, 755–756 (in Japanese).Google Scholar
  20. Morse, D. C. (1947): Some observations on seasonal variations in plankton population Patuxent River, Maryland. Chesapeake Biol. Lab. Publ., 65, 1–31.Google Scholar
  21. Mouritsen, N. T. and K. Richardson (2003): Vertical microscale patchiness in nano-and microplankton distributions in a stratified estuary. J. Plankton Res., 25, 783–797.CrossRefGoogle Scholar
  22. Mulford, R. A. (1963): Distribution of the dinoflagellate genus Ceratium in the tidal and offshore waters of Virginia. Chesapeake Sci., 4, 84–89.CrossRefGoogle Scholar
  23. Nielsen, T. G. (1991): Contribution of zooplankton grazing to the decline of a Ceratium bloom. Limnol. Oceanogr., 36, 1091–1106.Google Scholar
  24. Nordli, E. (1953): Salinity and temperature as controlling factors for distribution and mass occurrence of ceratia. Blyttia, 2, 16–18.Google Scholar
  25. Norris, D. R. (1969): Possible phagotrophic feeding in Ceratium lunula Schimper. Limnol. Oceanogr., 14, 448–449.Google Scholar
  26. Ogata, T., T. Ishimaru and M. Kodama (1987): Effect of water temperature and light intensity on growth rate and toxicity change in Protogonyaulax tamarensis. Mar. Biol., 95, 217–220.CrossRefGoogle Scholar
  27. Parsons, T. R., Y. Maita and C. M. Lalli (1984): A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford, 173 pp.Google Scholar
  28. Rasmussen, J. and K. Richardson (1989): Response of Gonyaulax tamarensis to the presence of a pycnocline in an artificial water column. J. Plankton Res., 11, 747–762.Google Scholar
  29. Smalley, G. W. and D. W. Coats (2002): Ecology of the red-tide dinoflagellate Ceratium furca: distribution, mixotrophy, and garzing impact on ciliate populations of Chesapeake Bay. J. Eukaryot Microbiol., 49, 64–74.CrossRefGoogle Scholar
  30. Smalley, G. W., D. W. Coats and D. K. Stoecker (2003): Feeding in the mixotrophic dinoflagellate Ceratium furca is influenced by intracellular nutrient concentrations. Mar. Ecol. Prog. Ser., 262, 137–151.Google Scholar
  31. Suh, Y. S., N. K. Lee and L. H. Jang (2003): Feasibility of red tide detection around Korean waters using satellite remote sensing. p. 53–56. In Workshop on Red Tide Monitoring in Asian Coastal Waters (Program and Extended Abstracts), University of Tokyo, Tokyo.Google Scholar
  32. Suzuki, R. and T. Ishimaru (1990): An improved method for the determination of phytoplankton chlorophyll using N,N-dimethylformamide. J. Oceanogr. Soc. Japan, 46, 190–194.CrossRefGoogle Scholar
  33. Watanabe, M., K. Kohata and M. Kunugi (1988): Phosphate accumulation and metabolism by Heterosigma akashiwo (Raphidophyceae) during diel vertical migration in a stratified microcosm. J. Phycol., 24, 22–28.CrossRefGoogle Scholar
  34. Weiler, C. S. (1980): Population structure and in situ division rates of Ceratium in oligotrophic waters of the North Pacific central gyre. Limnol. Oceanogr., 25, 610–619.CrossRefGoogle Scholar
  35. Yin, K. (2003): Influence of monsoons and oceanographic processes on red tides in Hong Kong waters. Mar. Ecol. Prog. Ser., 262, 27–41.Google Scholar

Copyright information

© The Oceanographic Society of Japan/TERRAPUB/Springer 2007

Authors and Affiliations

  • Seung Ho Baek
    • 1
  • Shinji Shimode
    • 1
  • Tomohiko Kikuchi
    • 1
  1. 1.Graduate School of Environmental and Information SciencesYokohama National UniversityTokiwadai, Hodogaya-ku, YokohamaJapan

Personalised recommendations