Skip to main content

Advertisement

Log in

N2 fixation variability in the oligotrophic Sulu Sea, western equatorial Pacific region over the past 83 kyr

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

N2 fixation is an important biological process that adds new nitrogen to oceans and plays a key role in modulating the oceanic nitrate inventory. However, it is not known how, when, and where N2 fixation rates have varied in response to past climate changes. This study presents a new record of nitrogen isotopic composition (δ15N) over the last 83 kyr from a sediment core (KH02-4 SUP8) taken in the Sulu Sea in the western equatorial Pacific region; data allow the N2 fixation variability in the sea to be reconstructed. Sediments, sinking, and suspended particulate organic matter (POM) all have lighter isotopic values compared to the δ15N values of substrate nitrate (av. 5.8‰) in North Pacific Intermediate Water. These lighter δ15N values are regarded as reflecting N2 fixation in the Sulu Sea surface water. A δ15N mass balance model shows that N2 fixation rates were significantly enhanced during 54–34 kyr in MIS-3 and MIS-2. It has been speculated that higher interglacial denitrification rates in the Arabian Sea and the eastern tropical Pacific would have markedly decreased the global oceanic N inventory and contributed to the increase in N2 fixation in oligotrophic regions, but such a model was not revealed by our study. It is possible that changes in N2 fixation rates in the Sulu Sea were regional response, and accumulation of phosphate in the surface waters due to enhanced monsoon-driven mixing is thought to have stimulated enhancements of N2 fixation during MIS-3 and MIS-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altabet, M. A. (1988): Variations in nitrogen isotopic composition between sinking and suspended particles: Implications for nitrogen cycling and particle transformation in the open ocean. Deep-Sea Res., Part I, 35, 535–554.

    Article  Google Scholar 

  • Altabet, M. A., C. Pilskaln, R. Thunell, C. Pride, D. Sigman, F. Chavez and R. Francois (1999): The nitrogen isotope biogeochemistry of sinking particles from the margin of the Eastern North Pacific. Deep-Sea Res., Part I, 46, 655–679.

    Article  Google Scholar 

  • Altabet, M. A., M. J. Higginson and D. W. Murray (2002): The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2. Nature, 415, 159–162.

    Article  Google Scholar 

  • Bard, E. (1988): Correlation of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: Paleoceanographic implications. Paleoceanography, 3, 635–645.

    Article  Google Scholar 

  • Berger, W. H., V. S. Smetacek and G. Wefer (1989): Ocean productivity and paleoproductivity-an overview. p. 1–34. In Productivity of the Ocean: Present and Past, ed. by W. H. Berger et al., John Wiley, New York.

    Google Scholar 

  • Betts, J. N. and H. D. Holland (1991): The oxygen content of ocean bottom waters, the burial efficiency of organic carbon, and the regulation of atmospheric oxygen. Palaeogeogr. Palaeoclimatol. Palaeoecol., 97, 5–18.

    Article  Google Scholar 

  • Brandes, J. A. and A. H. Devol (2002): A global marine-fixed nitrogen isotopic budget: Implications for Holocene nitrogen cycling. Global Biogeochem. Cycles, 16, doi:10.1029/2001GB001856.

    Google Scholar 

  • Brandes, J. A., A. H. Devol, T. Yoshinari, D. A. Jayakumar and S. W. A. Naqvi (1998): Isotopic composition of nitrate in the central Arabian Sea and eastern tropical North Pacific: A tracer for mixing and nitrogen cycles. Limnol. Oceanogr., 43, 1680–1689.

    Article  Google Scholar 

  • Capone, D. G., J. P. Zehr, H. W. Paerl, B. Bergman and E. J. Carpenter (1997): Trichodesmium: a globally significant marine cyanobacterium. Science, 276, 1221–1229.

    Article  Google Scholar 

  • Carpenter, E. J. and K. Romans (1991): Major role of the cyanobacterium Trichodesmium in nutrient cycling in the north Atlantic Ocean. Science, 254, 1356–1358.

    Google Scholar 

  • Checkley, D. M. and C. A. Miller (1989): Nitrogen isotope fractionation by oceanic zooplankton. Deep-Sea Res., 36, 1449–1456.

    Article  Google Scholar 

  • Chen, M.-T., L.-J. Shiau, P.-S. Yu, T.-C. Chiu, Y.-G. Chen and K.-U. Wei (2003): 500 000-Year records of carbonate, organic carbon, and foraminiferal sea-surface temperature from the southeastern South China Sea (near Palawan Island). Palaeogeogr. Palaeoclimatol. Palaeoecol., 197, 113–131.

    Article  Google Scholar 

  • Chen, Y.-L. L., H.-Y. Chen and Y.-H. Lin (2003): Distribution and downward flux of Trichodesmium in the South China Sea as influenced by the transport from the Kuroshio Current. Mar. Ecol. Prog. Ser., 259, 47–57.

    Google Scholar 

  • Codispoti, L. A., J. A. Brandes, J. P. Christensen, A. H. Devol, S. W. A. Naqvi, H. W. Paerl and T. Yoshinari (2001): The oceanic fixed nitrogen and nitrous oxide budgets: Moving targets as we enter the anthropocene? Sci. Mar., 65, 85–105.

    Article  Google Scholar 

  • Dannenmann, S., B. K. Linsley, D. W. Oppo, Y. Rosenthal and L. Beaufort (2003): East Asian monsoon forcing of suborbital variability in the Sulu Sea during marine isotope stage 3: Link to Northern Hemisphere climate. Geochem. Geophys. Geosyst., 4, 1001, doi:10.1029/2002GC000390.

    Article  Google Scholar 

  • de Garidel-Thoron, T., L. Beaufort, B. K. Linsley and S. Dannenmann (2001): Millennial-scale dynamics of the East Asian winter monsoon during the last 200,000 years. Paleoceanography, 16, 491–502.

    Article  Google Scholar 

  • Deines, P. (1980): The isotope composition of reduced organic carbon. p. 329–406. In Handbook of Environmental Isotope Geochemistry, ed. by P. Fritz and J. C. Fontes, Elsevier Sci., New York.

    Google Scholar 

  • Eglinton, J. R. and R. J. Hamilton (1967): Leaf epicuticular waxes. Science, 156, 1322–1335.

    Google Scholar 

  • Falkowski, P. G. (1997): Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature, 387, 272–275.

    Article  Google Scholar 

  • Ganeshram, R. S., T. F. Pedersen, S. E. Calvert, G. W. McNeill and M. R. Fontugne (2000): Glacial-interglacial variability in denitrification in the world’s oceans: Causes and consequences. Paleoceanography, 15, 361–376.

    Article  Google Scholar 

  • Ganeshram, R. S., T. F. Pedersen, S. E. Calvert and R. Francois (2002s): Reduced nitrogen fixation in the glacial ocean inferred from changes in marine nitrogen and phosphorus inventories. Nature, 415, 156–159.

    Article  Google Scholar 

  • Gomez, F., K. Furuya and S. Takeda (2005): Distribution of the cyanobacterium Richelia intracellularis as an epiphyte of the diatom Chaetoceros compressus in the western Pacific Ocean. J. Plankton Res., 27, 323–330.

    Article  Google Scholar 

  • Higginson, M. J., J. R. Maxwell and M. A. Altabet (2003): Nitrogen isotope and chlorine paleoproductivity records from the Northern South China Sea: remote vs. local forcing of millennial-and orbital-scale variability. Mar. Geol., 201, 223–250.

    Article  Google Scholar 

  • Huang, C.-Y., P.-M. Liew, M. Zhao, T.-C. Chang, C.-M. Kuo, M.-T. Chen, C.-H. Wang and L.-F. Zheng (1997): Deep sea and lake records of the Southeast Asian monsoons for the last 25 thousand years. Earth Planet. Sci. Lett., 146, 59–72.

    Article  Google Scholar 

  • Johnson-Ibach, L. E. (1982): Relationship between sedimentation rate and total organic carbon content in ancient marine sediments. AAPG Bull., 66, 170–188.

    Google Scholar 

  • Karl, D., R. Letelier, L. Tupas, J. Dore, J. Christian and D. Hebel (1997): The role of nitrogen fixation in biogeochemical cycling in the subtropical north Pacific ocean. Nature, 386, 533–538.

    Article  Google Scholar 

  • Karl, D., A. Michaels, B. Bergman, D. Capone, E. Carpenter, R. Letelier, F. Lipschultz, H. Paerl, D. Sigman and L. Stal (2002): Dinitrogen fixation in the world’s oceans. Biogeochemistry, 57/58, 47–98.

    Article  Google Scholar 

  • Kienast, M. (2000): Unchanged nitrogen isotopic composition of organic matter in the South China Sea during the last climatic cycle: Global implications. Paleoceanography, 15, 244–253.

    Article  Google Scholar 

  • Kienast, M., S. E. Calvert, C. Pelejero and J. O. Grimalt (2001): A critical review of marine sedimentary δ 13Corg-pCO2 estimates: New palaeorecords from the South China Sea and a revisit of other low-latitude δ 13Corg-pCO2 records. Global Biogeochem. Cycles, 15, 113–127.

    Article  Google Scholar 

  • Kienast, M., M. J. Higginson, G. Mollenhauer, T. I. Eglinton, M.-T. Chen and S. E. Calvert (2005): On the sedimentological origin of down-core variations of bulk sedimentary nitrogen isotope ratios. Paleoceanography, 20, doi:10.1029/2004PA001081.

    Google Scholar 

  • Knies, J. and U. Mann (2002): Depositional environment and source rock potential of Miocene strata from the central Fram Strait: Introduction of a new computing tool for simulating organic facies variations. Mar. Petrol. Geol., 19, 811–828.

    Article  Google Scholar 

  • Kuehl, S. A., Ty. J. Fuglseth and R. C. Thunell (1993): Sediment mixing and accumulation rates in the Sulu and South China Seas: Implications for organic carbon preservation in deep-sea environments. Mar. Geol., 111, 15–35.

    Article  Google Scholar 

  • Laws, E. A., B. Popp, R. R. Bidigare, M. C. Kennicutt and S. A. Macko (1995): Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2]aq: Theoretical considerations and experimental results. Geochim. Cosmochim. Acta, 59, 1131–1138.

    Article  Google Scholar 

  • Linsley, B. K. and R. B. Dunbar (1994): The late Pleistocene history of surface water δ 13C in the Sulu Sea: Possible relationship to Pacific deepwater δ 13C changes. Paleoceanography, 9, 317–340.

    Article  Google Scholar 

  • Linsley, B. K., R. C. Thunell, C. Morgan and D. F. Williams (1985): Oxygen minimum expansion in the Sulu Sea, western equatorial Pacific, during the last glacial low stand of sea level. Mar. Micropaleontol., 9, 395–418.

    Article  Google Scholar 

  • Liu, K. K., M. J. Su, C. R. Hsueh and G. C. Gong (1996): The nitrogen isotopic composition of dissolved nitrate in the Kuroshio upwelling water northeast of Taiwan. Mar Chem., 54, 273–292.

    Article  Google Scholar 

  • MacKinnon, K. (1997): The Ecology of Kalimantan (Indonesian Borneo). Periplus Editions, Singapore.

    Google Scholar 

  • Martinson, D. G., N. G. Pisias, J. D. Hays, J. Imbrie, T. C. Moore, Jr. and N. J. Shackleton (1987): Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. Quat. Res., 27, 1–29.

    Article  Google Scholar 

  • Marumo, R. (1974): Phytoplankton in the sea area of the southeast Asia, the Kuroshio III. p. 221–259. In Proceedings of the Third CSK Symposium, Bangkok, Thailand.

  • Minagawa, M. and E. Wada (1986): Nitrogen isotope ratios of red tide organisms in the East China Sea: A characterization of biological nitrogen fixation. Mar. Chem., 19, 245–259.

    Article  Google Scholar 

  • Montoya, J. P., E. J. Carpenter and D. G. Capone (2002): Nitrogen fixation and nitrogen isotope abundances in zooplankton of the oligotrophic North Atlantic. Limnol. Oceanogr., 47, 1617–1628.

    Article  Google Scholar 

  • Montoya, J. P., C. M. Holl, J. P. Zehr, A. Hansen, T. A. Villareal and D. G. Capone (2004): High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean. Nature, 430, 1027–1031.

    Article  Google Scholar 

  • Muller, P. J. and E. Suess (1979): Productivity, sedimentation rate, and sedimentary organic matter in the oceans. I. Organic matter preservation. Deep-Sea Res., Part A, 26, 1347–1362.

    Article  Google Scholar 

  • Nair, R. R., V. Ittekkot, S. J. Manganini, V. Ramaswamy, B. Haake, E. T. Degens, B. N. Desai and S. Honjo (1989): Increased particle flux to the deep ocean related to monsoons. Nature, 338, 749–751.

    Article  Google Scholar 

  • Nakanishi, T. (2003): Biogeochemical environments in the Japan Sea during the past 80,000 years as estimated by biomarkers and stable isotopes. Doctoral thesis, Hokkaido University.

  • Nakanishi, T. and M. Minagawa (2003): Stable carbon and nitrogen isotopic compositions of sinking particles in the northeast Japan Sea. Geochem. J., 37, 261–275.

    Google Scholar 

  • Nozaki, Y., D. S. Alibo, H. Amakawa, T. Gamo and H. Hasumoto (1999): Dissolved rare earth elements and hydrography in the Sulu Sea. Geochim. Cosmochim. Acta, 63, 2171–2181.

    Article  Google Scholar 

  • O’Leary, M. H. (1988): Carbon isotopes in photosynthesis, BioScience, 38, 328–336.

    Article  Google Scholar 

  • Olson, R. J. (1981): Differential photoinhibition of marine nitrifying bacteria: A possible mechanism for the formation of the primary nitrite maximum. J. Mar. Res., 39, 227–238.

    Google Scholar 

  • Pace, M., G. Knauer, D. Karl and J. Martin (1987): Primary production, new production and vertical flux in the eastern Pacific Ocean. Nature, 325, 803–804.

    Article  Google Scholar 

  • Paerl, H. W., L. E. Prufert-Bebout and C. Gou (1994): Iron-stimulated N2 fixation and growth in natural and cultured populations of the planktonic marine cyanobacteria Trichodesmium spp. Appl. Environ. Microbiol., 60, 1044–1047.

    Google Scholar 

  • Pelejero, C. (2003): Terrigenous n-alkane input in the South China Sea: high-resolution records and surface sediments. Chem. Geol., 200, 89–103.

    Article  Google Scholar 

  • Peters, K. E., R. E. Sweeney and I. R. Kaplan (1978): Correlation of carbon and nitrogen stable isotope ratios in sedimentary organic matter. Limnol. Oceanogr., 23, 598–604.

    Article  Google Scholar 

  • Petit, J. R., J. Jouzel, D. Raynaud, N. I. Barkov, J.-M. Barnola, I. Basile, M, Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pepin, C. Ritz, E. Saltzman and M. Stievenard (1999): Climate and atmospheric history of the past 240,000 years from the Vostok ice core, Antarctica. Nature, 399, 429–436.

    Article  Google Scholar 

  • Preliminary Report of the Hakuho-Maru Cruise KH02-4 (2004): Studies on biodiversity and geochemical cycles in the Sulu Sea and its adjacent waters. Ocean Research Institute University of Tokyo.

  • Quadfasel, D. H., H. Kudrass and A. Frische (1990): Deep-water renewal by turbidity currents in the Sulu Sea. Nature, 348, 320–322.

    Article  Google Scholar 

  • Rau, G. H., T. Takahashi and D. J. Des Marais (1989): Latitudinal variations in plankton δ 13C: Implications for CO2 and productivity in past oceans. Nature, 341, 516–518.

    Article  Google Scholar 

  • Saino, T. and A. Hattori (1980): Nitrogen fixation by Trichodesmium and its significance in nitrogen cycling in the Kuroshio and adjacent waters. p. 697–709. In The Kuroshio, ed. by A. Y. Takenouti, Saikon Publishing, Tokyo.

    Google Scholar 

  • Saino, T. and A. Hattori (1987): Geographical variation of the water column distribution of suspended particulate organic nitrogen and its 15N natural abundance in the Pacific and its marginal seas. Deep-Sea Res., 34, 807–827.

    Article  Google Scholar 

  • Sigman, D. M., J. Granger, P. J. DiFiore, M. M. Lehmann, R. Ho, G. Cane and A. van Geen (2005): Coupled nitrogen and oxygen isotope measurements of nitrate along the eastern North Pacific margin. Global Biogeochem. Cycles, 19, GB4022, doi:10.1029/2005GB002458.

  • Stow, D. A. V., H. G. Reading and J. D. Collinson (1996): Deep seas. p. 395–454. In Sedimentary Environments: Processes, Facies and Stratigraphy, ed. by H. G. Reading, Blackwell Scientific, Oxford.

    Google Scholar 

  • Stuiver, M., P. J. Reimer, E. Bard, J. W. Beck, G. S. Burr, K. A. Hughen, B. Kromer, F. G. McCormac, J. v.d. Picht and M. Spurk (1998): INTERCAL98 Radiocarbon age calibration 24,000-0 cal BP. Radiocarbon, 40, 1041–1083.

    Google Scholar 

  • Sun, X., X. Li, Y. Luo and X. Chen (2000): The vegetation and climate at the last glaciation on the emerged continental shelf of the South China Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol., 160, 301–316.

    Article  Google Scholar 

  • Sweeney, R. E. and I. R. Kaplan (1980): Natural abundances of 15N as a source indicator for nearshore marine sedimentary and dissolved nitrogen. Mar. Chem., 9, 81–94.

    Article  Google Scholar 

  • Tamburini, F., T. Adatte, K. Föllmi, S. M. Bernasconi and P. Steinmann (2003): Investigating the history of east Asian monsoon and climate during the last glacial-interglacial period (0–140,000 years): Mineralogy and geochemistry of ODP Sites 1143 and 1144 South China Sea. Mar. Geol., 201, 147–168.

    Article  Google Scholar 

  • Thunell, R. C., D. M. Sigman, F. Muller-Karger, Y. Astor and R. Varela (2004): Nitrogen isotope dynamics of the Cariaco Basin, Venezuela. Global Biogeochem. Cycles, 18, GB3001, doi:10.1029/2003GB002185.

  • Tjia, H. D. (1980): The Sunda shelf, southeast Asia. Z. Geomorphol., 24, 405–427.

    Google Scholar 

  • Tyrrell, T., E. Maranon, A. J. Poulton, A. R. Bowie, E. S. Harbour and E. M. S. Woodward (2003): Large-scale latitudinal distribution of Trichodesmium spp. In the Atlantic Ocean. J. Plankton Res., 25, 405–416.

    Article  Google Scholar 

  • Visser, K., R. Thunell and M. A. Goni (2004): Glacial-interglacial organic carbon record from the Makassar Strait, Indonesia: Implications for regional changes in continental vegetation. Quat. Sci. Rev., 23, 17–27.

    Article  Google Scholar 

  • Wada, E. and A. Hattori (1976): Natural abundance of 15N in particulate organic matter in the North Pacific Ocean. Geochim. Cosmochim. Acta, 40, 249–251.

    Article  Google Scholar 

  • Wahyudi (1997): Last glacial-Holocene paleoenvironmental changes of the Okinawa trough in the East China Sea and the Ryukyu forearc region in the Northwest Pacific. Doctoral thesis, Hokkaido University.

  • Wu, J., W. Sunda, E. Boyle and D. Karl (2000): Phosphate depletion in the western North Atlantic Ocean. Science, 289, 759–762.

    Article  Google Scholar 

  • Wyrtki, K. (1961): Scientific results of marine investigations of the South China Sea and the Gulf of Thailand, physical oceanography of the Southeast Asian water. Univ. California, Scrips Inst. Oceanogr., La Jolla, California.

    Google Scholar 

  • You, Y., C.-S. Chern, Y. Yangi, C.-T. Liu, K.-K. Liu and S.-C. Pai (2005): The South China Sea, a cul-de-sac of North Pacific Intermediate Water. J. Oceanogr., 61, 509–527.

    Article  Google Scholar 

  • Zehr, J. P., J. B. Waterbury, P. J. Turner, J. P. Montoya, E. Omoregie, G. F. Steward, A. Hansen and D. M. Karl (2001): Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature, 412, 635–638.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Horikawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horikawa, K., Minagawa, M., Kato, Y. et al. N2 fixation variability in the oligotrophic Sulu Sea, western equatorial Pacific region over the past 83 kyr. J Oceanogr 62, 427–439 (2006). https://doi.org/10.1007/s10872-006-0066-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-006-0066-2

Keywords

Navigation