Journal of Oceanography

, Volume 62, Issue 4, pp 427–439 | Cite as

N2 fixation variability in the oligotrophic Sulu Sea, western equatorial Pacific region over the past 83 kyr

  • Keiji Horikawa
  • Masao Minagawa
  • Yoshihisa Kato
  • Masafumi Murayama
  • Seiya Nagao
Original Article


N2 fixation is an important biological process that adds new nitrogen to oceans and plays a key role in modulating the oceanic nitrate inventory. However, it is not known how, when, and where N2 fixation rates have varied in response to past climate changes. This study presents a new record of nitrogen isotopic composition (δ15N) over the last 83 kyr from a sediment core (KH02-4 SUP8) taken in the Sulu Sea in the western equatorial Pacific region; data allow the N2 fixation variability in the sea to be reconstructed. Sediments, sinking, and suspended particulate organic matter (POM) all have lighter isotopic values compared to the δ15N values of substrate nitrate (av. 5.8‰) in North Pacific Intermediate Water. These lighter δ15N values are regarded as reflecting N2 fixation in the Sulu Sea surface water. A δ15N mass balance model shows that N2 fixation rates were significantly enhanced during 54–34 kyr in MIS-3 and MIS-2. It has been speculated that higher interglacial denitrification rates in the Arabian Sea and the eastern tropical Pacific would have markedly decreased the global oceanic N inventory and contributed to the increase in N2 fixation in oligotrophic regions, but such a model was not revealed by our study. It is possible that changes in N2 fixation rates in the Sulu Sea were regional response, and accumulation of phosphate in the surface waters due to enhanced monsoon-driven mixing is thought to have stimulated enhancements of N2 fixation during MIS-3 and MIS-2.


N2 fixation paleoproductivity carbon and nitrogen stable isotopic compositions Sulu Sea western equatorial Pacific 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altabet, M. A. (1988): Variations in nitrogen isotopic composition between sinking and suspended particles: Implications for nitrogen cycling and particle transformation in the open ocean. Deep-Sea Res., Part I, 35, 535–554.CrossRefGoogle Scholar
  2. Altabet, M. A., C. Pilskaln, R. Thunell, C. Pride, D. Sigman, F. Chavez and R. Francois (1999): The nitrogen isotope biogeochemistry of sinking particles from the margin of the Eastern North Pacific. Deep-Sea Res., Part I, 46, 655–679.CrossRefGoogle Scholar
  3. Altabet, M. A., M. J. Higginson and D. W. Murray (2002): The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2. Nature, 415, 159–162.CrossRefGoogle Scholar
  4. Bard, E. (1988): Correlation of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: Paleoceanographic implications. Paleoceanography, 3, 635–645.CrossRefGoogle Scholar
  5. Berger, W. H., V. S. Smetacek and G. Wefer (1989): Ocean productivity and paleoproductivity-an overview. p. 1–34. In Productivity of the Ocean: Present and Past, ed. by W. H. Berger et al., John Wiley, New York.Google Scholar
  6. Betts, J. N. and H. D. Holland (1991): The oxygen content of ocean bottom waters, the burial efficiency of organic carbon, and the regulation of atmospheric oxygen. Palaeogeogr. Palaeoclimatol. Palaeoecol., 97, 5–18.CrossRefGoogle Scholar
  7. Brandes, J. A. and A. H. Devol (2002): A global marine-fixed nitrogen isotopic budget: Implications for Holocene nitrogen cycling. Global Biogeochem. Cycles, 16, doi:10.1029/2001GB001856.Google Scholar
  8. Brandes, J. A., A. H. Devol, T. Yoshinari, D. A. Jayakumar and S. W. A. Naqvi (1998): Isotopic composition of nitrate in the central Arabian Sea and eastern tropical North Pacific: A tracer for mixing and nitrogen cycles. Limnol. Oceanogr., 43, 1680–1689.CrossRefGoogle Scholar
  9. Capone, D. G., J. P. Zehr, H. W. Paerl, B. Bergman and E. J. Carpenter (1997): Trichodesmium: a globally significant marine cyanobacterium. Science, 276, 1221–1229.CrossRefGoogle Scholar
  10. Carpenter, E. J. and K. Romans (1991): Major role of the cyanobacterium Trichodesmium in nutrient cycling in the north Atlantic Ocean. Science, 254, 1356–1358.Google Scholar
  11. Checkley, D. M. and C. A. Miller (1989): Nitrogen isotope fractionation by oceanic zooplankton. Deep-Sea Res., 36, 1449–1456.CrossRefGoogle Scholar
  12. Chen, M.-T., L.-J. Shiau, P.-S. Yu, T.-C. Chiu, Y.-G. Chen and K.-U. Wei (2003): 500 000-Year records of carbonate, organic carbon, and foraminiferal sea-surface temperature from the southeastern South China Sea (near Palawan Island). Palaeogeogr. Palaeoclimatol. Palaeoecol., 197, 113–131.CrossRefGoogle Scholar
  13. Chen, Y.-L. L., H.-Y. Chen and Y.-H. Lin (2003): Distribution and downward flux of Trichodesmium in the South China Sea as influenced by the transport from the Kuroshio Current. Mar. Ecol. Prog. Ser., 259, 47–57.Google Scholar
  14. Codispoti, L. A., J. A. Brandes, J. P. Christensen, A. H. Devol, S. W. A. Naqvi, H. W. Paerl and T. Yoshinari (2001): The oceanic fixed nitrogen and nitrous oxide budgets: Moving targets as we enter the anthropocene? Sci. Mar., 65, 85–105.CrossRefGoogle Scholar
  15. Dannenmann, S., B. K. Linsley, D. W. Oppo, Y. Rosenthal and L. Beaufort (2003): East Asian monsoon forcing of suborbital variability in the Sulu Sea during marine isotope stage 3: Link to Northern Hemisphere climate. Geochem. Geophys. Geosyst., 4, 1001, doi:10.1029/2002GC000390.CrossRefGoogle Scholar
  16. de Garidel-Thoron, T., L. Beaufort, B. K. Linsley and S. Dannenmann (2001): Millennial-scale dynamics of the East Asian winter monsoon during the last 200,000 years. Paleoceanography, 16, 491–502.CrossRefGoogle Scholar
  17. Deines, P. (1980): The isotope composition of reduced organic carbon. p. 329–406. In Handbook of Environmental Isotope Geochemistry, ed. by P. Fritz and J. C. Fontes, Elsevier Sci., New York.Google Scholar
  18. Eglinton, J. R. and R. J. Hamilton (1967): Leaf epicuticular waxes. Science, 156, 1322–1335.Google Scholar
  19. Falkowski, P. G. (1997): Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature, 387, 272–275.CrossRefGoogle Scholar
  20. Ganeshram, R. S., T. F. Pedersen, S. E. Calvert, G. W. McNeill and M. R. Fontugne (2000): Glacial-interglacial variability in denitrification in the world’s oceans: Causes and consequences. Paleoceanography, 15, 361–376.CrossRefGoogle Scholar
  21. Ganeshram, R. S., T. F. Pedersen, S. E. Calvert and R. Francois (2002s): Reduced nitrogen fixation in the glacial ocean inferred from changes in marine nitrogen and phosphorus inventories. Nature, 415, 156–159.CrossRefGoogle Scholar
  22. Gomez, F., K. Furuya and S. Takeda (2005): Distribution of the cyanobacterium Richelia intracellularis as an epiphyte of the diatom Chaetoceros compressus in the western Pacific Ocean. J. Plankton Res., 27, 323–330.CrossRefGoogle Scholar
  23. Higginson, M. J., J. R. Maxwell and M. A. Altabet (2003): Nitrogen isotope and chlorine paleoproductivity records from the Northern South China Sea: remote vs. local forcing of millennial-and orbital-scale variability. Mar. Geol., 201, 223–250.CrossRefGoogle Scholar
  24. Huang, C.-Y., P.-M. Liew, M. Zhao, T.-C. Chang, C.-M. Kuo, M.-T. Chen, C.-H. Wang and L.-F. Zheng (1997): Deep sea and lake records of the Southeast Asian monsoons for the last 25 thousand years. Earth Planet. Sci. Lett., 146, 59–72.CrossRefGoogle Scholar
  25. Johnson-Ibach, L. E. (1982): Relationship between sedimentation rate and total organic carbon content in ancient marine sediments. AAPG Bull., 66, 170–188.Google Scholar
  26. Karl, D., R. Letelier, L. Tupas, J. Dore, J. Christian and D. Hebel (1997): The role of nitrogen fixation in biogeochemical cycling in the subtropical north Pacific ocean. Nature, 386, 533–538.CrossRefGoogle Scholar
  27. Karl, D., A. Michaels, B. Bergman, D. Capone, E. Carpenter, R. Letelier, F. Lipschultz, H. Paerl, D. Sigman and L. Stal (2002): Dinitrogen fixation in the world’s oceans. Biogeochemistry, 57/58, 47–98.CrossRefGoogle Scholar
  28. Kienast, M. (2000): Unchanged nitrogen isotopic composition of organic matter in the South China Sea during the last climatic cycle: Global implications. Paleoceanography, 15, 244–253.CrossRefGoogle Scholar
  29. Kienast, M., S. E. Calvert, C. Pelejero and J. O. Grimalt (2001): A critical review of marine sedimentary δ 13Corg-pCO2 estimates: New palaeorecords from the South China Sea and a revisit of other low-latitude δ 13Corg-pCO2 records. Global Biogeochem. Cycles, 15, 113–127.CrossRefGoogle Scholar
  30. Kienast, M., M. J. Higginson, G. Mollenhauer, T. I. Eglinton, M.-T. Chen and S. E. Calvert (2005): On the sedimentological origin of down-core variations of bulk sedimentary nitrogen isotope ratios. Paleoceanography, 20, doi:10.1029/2004PA001081.Google Scholar
  31. Knies, J. and U. Mann (2002): Depositional environment and source rock potential of Miocene strata from the central Fram Strait: Introduction of a new computing tool for simulating organic facies variations. Mar. Petrol. Geol., 19, 811–828.CrossRefGoogle Scholar
  32. Kuehl, S. A., Ty. J. Fuglseth and R. C. Thunell (1993): Sediment mixing and accumulation rates in the Sulu and South China Seas: Implications for organic carbon preservation in deep-sea environments. Mar. Geol., 111, 15–35.CrossRefGoogle Scholar
  33. Laws, E. A., B. Popp, R. R. Bidigare, M. C. Kennicutt and S. A. Macko (1995): Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2]aq: Theoretical considerations and experimental results. Geochim. Cosmochim. Acta, 59, 1131–1138.CrossRefGoogle Scholar
  34. Linsley, B. K. and R. B. Dunbar (1994): The late Pleistocene history of surface water δ 13C in the Sulu Sea: Possible relationship to Pacific deepwater δ 13C changes. Paleoceanography, 9, 317–340.CrossRefGoogle Scholar
  35. Linsley, B. K., R. C. Thunell, C. Morgan and D. F. Williams (1985): Oxygen minimum expansion in the Sulu Sea, western equatorial Pacific, during the last glacial low stand of sea level. Mar. Micropaleontol., 9, 395–418.CrossRefGoogle Scholar
  36. Liu, K. K., M. J. Su, C. R. Hsueh and G. C. Gong (1996): The nitrogen isotopic composition of dissolved nitrate in the Kuroshio upwelling water northeast of Taiwan. Mar Chem., 54, 273–292.CrossRefGoogle Scholar
  37. MacKinnon, K. (1997): The Ecology of Kalimantan (Indonesian Borneo). Periplus Editions, Singapore.Google Scholar
  38. Martinson, D. G., N. G. Pisias, J. D. Hays, J. Imbrie, T. C. Moore, Jr. and N. J. Shackleton (1987): Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. Quat. Res., 27, 1–29.CrossRefGoogle Scholar
  39. Marumo, R. (1974): Phytoplankton in the sea area of the southeast Asia, the Kuroshio III. p. 221–259. In Proceedings of the Third CSK Symposium, Bangkok, Thailand.Google Scholar
  40. Minagawa, M. and E. Wada (1986): Nitrogen isotope ratios of red tide organisms in the East China Sea: A characterization of biological nitrogen fixation. Mar. Chem., 19, 245–259.CrossRefGoogle Scholar
  41. Montoya, J. P., E. J. Carpenter and D. G. Capone (2002): Nitrogen fixation and nitrogen isotope abundances in zooplankton of the oligotrophic North Atlantic. Limnol. Oceanogr., 47, 1617–1628.CrossRefGoogle Scholar
  42. Montoya, J. P., C. M. Holl, J. P. Zehr, A. Hansen, T. A. Villareal and D. G. Capone (2004): High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean. Nature, 430, 1027–1031.CrossRefGoogle Scholar
  43. Muller, P. J. and E. Suess (1979): Productivity, sedimentation rate, and sedimentary organic matter in the oceans. I. Organic matter preservation. Deep-Sea Res., Part A, 26, 1347–1362.CrossRefGoogle Scholar
  44. Nair, R. R., V. Ittekkot, S. J. Manganini, V. Ramaswamy, B. Haake, E. T. Degens, B. N. Desai and S. Honjo (1989): Increased particle flux to the deep ocean related to monsoons. Nature, 338, 749–751.CrossRefGoogle Scholar
  45. Nakanishi, T. (2003): Biogeochemical environments in the Japan Sea during the past 80,000 years as estimated by biomarkers and stable isotopes. Doctoral thesis, Hokkaido University.Google Scholar
  46. Nakanishi, T. and M. Minagawa (2003): Stable carbon and nitrogen isotopic compositions of sinking particles in the northeast Japan Sea. Geochem. J., 37, 261–275.Google Scholar
  47. Nozaki, Y., D. S. Alibo, H. Amakawa, T. Gamo and H. Hasumoto (1999): Dissolved rare earth elements and hydrography in the Sulu Sea. Geochim. Cosmochim. Acta, 63, 2171–2181.CrossRefGoogle Scholar
  48. O’Leary, M. H. (1988): Carbon isotopes in photosynthesis, BioScience, 38, 328–336.CrossRefGoogle Scholar
  49. Olson, R. J. (1981): Differential photoinhibition of marine nitrifying bacteria: A possible mechanism for the formation of the primary nitrite maximum. J. Mar. Res., 39, 227–238.Google Scholar
  50. Pace, M., G. Knauer, D. Karl and J. Martin (1987): Primary production, new production and vertical flux in the eastern Pacific Ocean. Nature, 325, 803–804.CrossRefGoogle Scholar
  51. Paerl, H. W., L. E. Prufert-Bebout and C. Gou (1994): Iron-stimulated N2 fixation and growth in natural and cultured populations of the planktonic marine cyanobacteria Trichodesmium spp. Appl. Environ. Microbiol., 60, 1044–1047.Google Scholar
  52. Pelejero, C. (2003): Terrigenous n-alkane input in the South China Sea: high-resolution records and surface sediments. Chem. Geol., 200, 89–103.CrossRefGoogle Scholar
  53. Peters, K. E., R. E. Sweeney and I. R. Kaplan (1978): Correlation of carbon and nitrogen stable isotope ratios in sedimentary organic matter. Limnol. Oceanogr., 23, 598–604.CrossRefGoogle Scholar
  54. Petit, J. R., J. Jouzel, D. Raynaud, N. I. Barkov, J.-M. Barnola, I. Basile, M, Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pepin, C. Ritz, E. Saltzman and M. Stievenard (1999): Climate and atmospheric history of the past 240,000 years from the Vostok ice core, Antarctica. Nature, 399, 429–436.CrossRefGoogle Scholar
  55. Preliminary Report of the Hakuho-Maru Cruise KH02-4 (2004): Studies on biodiversity and geochemical cycles in the Sulu Sea and its adjacent waters. Ocean Research Institute University of Tokyo.Google Scholar
  56. Quadfasel, D. H., H. Kudrass and A. Frische (1990): Deep-water renewal by turbidity currents in the Sulu Sea. Nature, 348, 320–322.CrossRefGoogle Scholar
  57. Rau, G. H., T. Takahashi and D. J. Des Marais (1989): Latitudinal variations in plankton δ 13C: Implications for CO2 and productivity in past oceans. Nature, 341, 516–518.CrossRefGoogle Scholar
  58. Saino, T. and A. Hattori (1980): Nitrogen fixation by Trichodesmium and its significance in nitrogen cycling in the Kuroshio and adjacent waters. p. 697–709. In The Kuroshio, ed. by A. Y. Takenouti, Saikon Publishing, Tokyo.Google Scholar
  59. Saino, T. and A. Hattori (1987): Geographical variation of the water column distribution of suspended particulate organic nitrogen and its 15N natural abundance in the Pacific and its marginal seas. Deep-Sea Res., 34, 807–827.CrossRefGoogle Scholar
  60. Sigman, D. M., J. Granger, P. J. DiFiore, M. M. Lehmann, R. Ho, G. Cane and A. van Geen (2005): Coupled nitrogen and oxygen isotope measurements of nitrate along the eastern North Pacific margin. Global Biogeochem. Cycles, 19, GB4022, doi:10.1029/2005GB002458.Google Scholar
  61. Stow, D. A. V., H. G. Reading and J. D. Collinson (1996): Deep seas. p. 395–454. In Sedimentary Environments: Processes, Facies and Stratigraphy, ed. by H. G. Reading, Blackwell Scientific, Oxford.Google Scholar
  62. Stuiver, M., P. J. Reimer, E. Bard, J. W. Beck, G. S. Burr, K. A. Hughen, B. Kromer, F. G. McCormac, J. v.d. Picht and M. Spurk (1998): INTERCAL98 Radiocarbon age calibration 24,000-0 cal BP. Radiocarbon, 40, 1041–1083.Google Scholar
  63. Sun, X., X. Li, Y. Luo and X. Chen (2000): The vegetation and climate at the last glaciation on the emerged continental shelf of the South China Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol., 160, 301–316.CrossRefGoogle Scholar
  64. Sweeney, R. E. and I. R. Kaplan (1980): Natural abundances of 15N as a source indicator for nearshore marine sedimentary and dissolved nitrogen. Mar. Chem., 9, 81–94.CrossRefGoogle Scholar
  65. Tamburini, F., T. Adatte, K. Föllmi, S. M. Bernasconi and P. Steinmann (2003): Investigating the history of east Asian monsoon and climate during the last glacial-interglacial period (0–140,000 years): Mineralogy and geochemistry of ODP Sites 1143 and 1144 South China Sea. Mar. Geol., 201, 147–168.CrossRefGoogle Scholar
  66. Thunell, R. C., D. M. Sigman, F. Muller-Karger, Y. Astor and R. Varela (2004): Nitrogen isotope dynamics of the Cariaco Basin, Venezuela. Global Biogeochem. Cycles, 18, GB3001, doi:10.1029/2003GB002185.Google Scholar
  67. Tjia, H. D. (1980): The Sunda shelf, southeast Asia. Z. Geomorphol., 24, 405–427.Google Scholar
  68. Tyrrell, T., E. Maranon, A. J. Poulton, A. R. Bowie, E. S. Harbour and E. M. S. Woodward (2003): Large-scale latitudinal distribution of Trichodesmium spp. In the Atlantic Ocean. J. Plankton Res., 25, 405–416.CrossRefGoogle Scholar
  69. Visser, K., R. Thunell and M. A. Goni (2004): Glacial-interglacial organic carbon record from the Makassar Strait, Indonesia: Implications for regional changes in continental vegetation. Quat. Sci. Rev., 23, 17–27.CrossRefGoogle Scholar
  70. Wada, E. and A. Hattori (1976): Natural abundance of 15N in particulate organic matter in the North Pacific Ocean. Geochim. Cosmochim. Acta, 40, 249–251.CrossRefGoogle Scholar
  71. Wahyudi (1997): Last glacial-Holocene paleoenvironmental changes of the Okinawa trough in the East China Sea and the Ryukyu forearc region in the Northwest Pacific. Doctoral thesis, Hokkaido University.Google Scholar
  72. Wu, J., W. Sunda, E. Boyle and D. Karl (2000): Phosphate depletion in the western North Atlantic Ocean. Science, 289, 759–762.CrossRefGoogle Scholar
  73. Wyrtki, K. (1961): Scientific results of marine investigations of the South China Sea and the Gulf of Thailand, physical oceanography of the Southeast Asian water. Univ. California, Scrips Inst. Oceanogr., La Jolla, California.Google Scholar
  74. You, Y., C.-S. Chern, Y. Yangi, C.-T. Liu, K.-K. Liu and S.-C. Pai (2005): The South China Sea, a cul-de-sac of North Pacific Intermediate Water. J. Oceanogr., 61, 509–527.CrossRefGoogle Scholar
  75. Zehr, J. P., J. B. Waterbury, P. J. Turner, J. P. Montoya, E. Omoregie, G. F. Steward, A. Hansen and D. M. Karl (2001): Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature, 412, 635–638.CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan/TERRAPUB/Springer 2006

Authors and Affiliations

  • Keiji Horikawa
    • 1
  • Masao Minagawa
    • 1
  • Yoshihisa Kato
    • 2
  • Masafumi Murayama
    • 3
  • Seiya Nagao
    • 1
  1. 1.Graduate School of Environmental Earth ScienceHokkaido UniversitySapporoJapan
  2. 2.School of Marine Science and TechnologyTokai UniversityShizuokaJapan
  3. 3.Center for Advanced Marine Core ResearchKochi UniversityNankokuJapan

Personalised recommendations