Advertisement

Journal of Oceanography

, Volume 62, Issue 2, pp 171–183 | Cite as

Seasonal and interannual variations in the East Sakhalin current revealed by TOPEX/POSEIDON altimeter data

  • Naoto Ebuchi
Article

Abstract

Seasonal and interannual variations in the East Sakhalin Current (ESC) are investigated using ten-year records of the sea level anomaly (SLA) observed by the TOPEX/POSEIDON (T/P) altimeter. The T/P SLA clearly documents seasonal and interannual variations in the ESC along the east coast of Sakhalin Island, although sea ice masks the region from January to April. Estimates of surface current velocity anomaly derived from T/P SLA are in good agreement with drifting buoy observations. The ESC is strong in winter, with a typical current velocity of 30–40 cm s−1 in December, and almost disappears in summer. Southward flow of the ESC is confined to the shelf and slope region and consists of two velocity cores. These features of the ESC are consistent with short-term observations reported in previous studies. Analysis of the ten-year records of T/P SLA confirms that the structure of the ESC is maintained each winter and the seasonal cycle is repeated every year, although the strength of the ESC shows large interannual variations. Seasonal and interannual variations in the ESC are discussed in relation to wind-driven circulation in the Sea of Okhotsk, using wind stress and wind stress curl fields derived from European Centre for Medium Range Weather Forecasts (ECMWF) reanalysis data and a scatterometer-derived wind product. Seasonal and interannual variations of the anticyclonic eddy in the Kuril Basin are also revealed using T/P SLA.

Keywords

East Sakhalin Current Sea of Okhotsk TOPEX/POSEIDON satellite altimetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AVISO/Altimetry (1998): AVISO User Handbook: Sea Level Anomalies (edition 3.1). AVI-NT-011-312-CN, CLS Space Oceanography Division, Toulouse, France, 24 pp.Google Scholar
  2. Bentamy A., Y. Quilfen, F. Gohin, N. Grima, M. Lenaour and J. Servain (1996): Determination and validation of average wind fields from ERS-1 scatterometer measurements. Global Atmos. Ocean Sys., 4, 1–29.Google Scholar
  3. Bulatov, N. V., L. A. Kurennaya, L. S. Muktepavel, M. G. Aleksanina and E. E. Gerbek (1999): Eddy water structure in the southern Okhotsk Sea and its seasonal variability (results of satellite monitoring). Oceanology, 39, 29–37.Google Scholar
  4. Csanady, G. T. (1978): The arrested topography wave. J. Phys. Oceanogr., 8, 47–62.CrossRefGoogle Scholar
  5. Ebuchi, N. and K. Hanawa (1995): Comparison of surface current variations observed by TOPEX altimeter with TOLEX-ADCP data. J. Oceanogr., 51, 351–362.CrossRefGoogle Scholar
  6. Ebuchi, N. and K. Hanawa (1996): Comparison of sea surface heights observed by TOPEX altimeter with sea level data at Chichijima. J. Oceanogr., 52, 259–273.CrossRefGoogle Scholar
  7. Fukamachi, Y., G. Mizuta, K. I. Ohshima, L. D. Talley, S. C. Riser and M. Wakatsuchi (2004): Transport and modification processes of dense shelf water revealed by long-term moorings off Sakhalin in the Sea of Okhotsk. J. Geophys. Res., 109, C09S10, doi:10/1029/2003JC001906.Google Scholar
  8. IFREMER (2002): Mean Wind Field User Manual (version 1.0). C2-MUT-W-05-IF, CERSAT-IFREMER, Plouzane, France, 52 pp.Google Scholar
  9. Imawaki, S., H. Uchida, K. Ichikawa and D. Ambe (2003): Estimating the high-resolution mean sea-surface velocity field by combined use of altimeter and drifter data for geoid model improvement. Space Sci. Rev., 108, 195–204.CrossRefGoogle Scholar
  10. Kitani, K. (1973): An oceanographic study of the Okhotsk Sea: Particularly in regard to cold waters. Bull. Far Sea Fish. Res. Lab., 9, 45–77.Google Scholar
  11. Leonov, A. K. (1960): The Sea of Okhotsk. Natl. Tech. Inf. Serv., Springfield, VA, U.S.A.Google Scholar
  12. Mizuta, G., Y. Fukamachi, K. I. Ohshima and M. Wakatsuchi (2003): Structure and seasonal variability of the East Sakhalin Current. J. Phys. Oceanogr., 33, 2430–2445.CrossRefGoogle Scholar
  13. Moroshkin, K. V. (1966): Water masses of the Sea of Okhotsk. Joint Pub. Res. Serv. 43942, U.S. Dept. of Comm., Washington, D.C., 98 pp.Google Scholar
  14. Nakamura, T. and T. Awaji (2004): Tidally induced diapycnal mixing in the Kuril Straits and its role in water transformation and transport: A three-dimensional nonhydrostatic model experiment. J. Geophys. Res., 109, C09S07, doi:10.1029/2003JC001850.Google Scholar
  15. Ohshima, K. I., M. Wakatsuchi, Y. Fukamachi and G. Mizuta (2002): Near-surface circulation and tidal currents of the Okhotsk Sea observed with satellite-tracked drifters. J. Geophys. Res., 107, 3195, doi: 10.1029/2001JC001005.CrossRefGoogle Scholar
  16. Ohshima, K. I., D. Simizu, M. Itoh, G. Mizuta, Y. Fukamachi, S. C. Riser and M. Wakatsuchi (2004): Sverdrup balance and the cyclonic gyre in the Sea of Okhotsk. J. Phys. Oceanogr., 34, 513–525.CrossRefGoogle Scholar
  17. Ohshima, K. I., Y. Fukamachi, T. Mutoh and M. Wakatsuchi (2005): A generation mechanism for mesoscale eddies in the Kuril Basin of the Okhotsk Sea: Baroclinic instability caused by enhanced tidal mixing. J. Oceanogr., 61, 247–260.Google Scholar
  18. Parkinson, C. L. and A. J. Gratz (1983): On the seasonal sea ice cover of the Sea of Okhotsk. J. Geophys. Res., 88, 2793–2802.Google Scholar
  19. Schlax, M. G. and D. B. Chelton (1994): Aliased tidal errors in TOPEX/POSEIDON sea surface height data. J. Geophys. Res., 99, 24,761–24,776.Google Scholar
  20. Simizu, D. and K. I. Ohshima (2002): Barotropic response of the Sea of Okhotsk to wind forcing. J. Oceanogr., 58, 851–860.CrossRefGoogle Scholar
  21. Simizu, D. and K. I. Ohshima (2006): A model simulation on the circulation in the Sea of Okhotsk and the East Sakhalin Current. J. Geophys. Res., doi:10.1029/2005JC002980 (in press).Google Scholar
  22. Smith, S. D. (1988): Coefficients for sea surface wind stress, heat flux and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93, 15,467–15,472.Google Scholar
  23. Talley, L. D. (1991): Okhotsk Sea water anomaly: Implications for ventilation in the North Pacific. Deep-Sea Res., 38, Suppl. 1, 171–190.Google Scholar
  24. Talley, L. D. and Y. Nagata (1995): The Okhotsk Sea and Oyashio Region. PICES Sci. Rep., PICES, Sydney, B.C., Canada, 2, 227 pp.Google Scholar
  25. Uchida, H. and S. Imawaki (2003): Eulerian mean surface velocity field derived by combining drifter and satellite altimeter data. Geophys. Res. Lett., 30, 1229, doi:10.1029/2002GL016445.Google Scholar
  26. Uchimoto, K., H. Mitsudera, N. Ebuchi and Y. Miyazawa (2006): Clockwise eddy caused by the Soya Warm Current in an OGCM. J. Oceanogr. (submitted).Google Scholar
  27. Wakatsuchi, M. and S. Martin (1990): Satellite observations of the ice cover of the Kuril Basin region of the Okhotsk Sea and its relation to the regional oceanography. J. Geophys. Res., 95, 13,393–13,410.Google Scholar
  28. Wakatsuchi, M. and S. Martin (1991): Water circulation of the Kuril Basin of the Okhotsk Sea and its relation to eddy formation. J. Oceanogr. Soc. Japan, 47, 152–168.CrossRefGoogle Scholar
  29. Watanabe, K. (1963): On the reinforcement of the East Sakhalin Current preceding to the sea ice season off the coast of Hokkaido—Study on the sea ice in the Okhotsk Sea (IV). Ocenogr. Mag., 14, 117–130.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Naoto Ebuchi
    • 1
  1. 1.Institute of Low Temperature ScienceHokkaido UniversityKita-ku, SapporoJapan

Personalised recommendations