Skip to main content

Advertisement

Log in

Roles of Biogeochemical Processes in the Oceanic Carbon Cycle Described with a Simple Coupled Physical-Biogeochemical Model

  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

To evaluate the contribution of biogeochemical processes to the oceanic carbon cycle and to calculate the ratio of calcium carbonate to organic carbon downward export, we have incorporated biological and alkalinity pumps in the yoked high-latitude exchange/interior diffusion-advection (YOLDA) model. The biogeochemical processes are represented by four parameters. The values of the parameters are tuned so that the model can reproduce the observed phosphate and alkalinity distributions in each oceanic region. The sensitivity of the model to the biogeochemical parameters shows that biological production rates in the euphotic zone and decomposition depths of particulate matters significantly influence horizontal and vertical distributions of biogeochemical substances. The modeled vertical fluxes of particulate organic phosphorus and calcium carbonate are converted to vertical carbon fluxes by the biological pump and the alkalinity pump, respectively. The downward carbon flux from the surface layer to the deep layer in the entire region is estimated to be 3.36 PgC/yr, which consists of 2.93 PgC/yr from the biological pump and 0.43 PgC/yr from the alkalinity pump, which is consistent with previous studies. The modeled rain ratio is higher with depth and higher in the Pacific and Indian Oceans than in the Atlantic Ocean. The global rain ratio at the surface layer is calculated to be 0.14 to 0.15. This value lies between the lower and higher ends of the previous estimates, which range widely from 0.05 to 0.25. This study indicates that the rain ratio is unlikely to be higher than 0.15, at least in the surface waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Reference

  • Archer, D., D. Lea and N. Mahowald (2000): What caused the glacial/interglacial atmospheric pCO2 cycles? Rev. Geophys., 38, 159–189.

    Article  Google Scholar 

  • Aumont, O. (1998): Etude du cycle naturel du carbone dans un modele 3D de l'ocean mondial. Doctrat thesis, Univite Paris VI.

  • Bacastow, R. and E. Maier-Reimer (1990): Ocean-circulation model of the carbon cycle. Clim. Dyn., 4, 95–125.

    Article  Google Scholar 

  • Betzer, P. R., W. J. Showers, E. A. Laws, C. D. Winn, G. R. DiTullio and P. M. Kroopnick (1984): Primary productivity and particle fluxes on a transect of the equator at 153°W in the Pacific Ocean. Deep-Sea Res., 31, 1–11.

    Article  Google Scholar 

  • Broecker, W. S. (1971): Calcite accumulation rates and glacial to interglacial changes in oceanic mixing. p. 239–265. In The Late Cenozic Glacial Ages, ed. by K. K. Turekian, Yale Univ. Press, New Haven, Conn.

    Google Scholar 

  • Broecker, W. S. and T.-H. Peng (1982): Tracers in the Sea. Lamont-Doherty Geol. Obs., Palisades, New York, 690 pp.

    Google Scholar 

  • Brown, C. W. and J. A. Yoder (1994): Coccolithophorid blooms in the global ocean. J. Geophys. Res., 99, 7467–7482.

    Google Scholar 

  • Buesseler, K. O. (1991): Do upper-ocean sediment traps provide an accurate record of particle flux? Nature, 353, 4420–4423.

    Article  Google Scholar 

  • Chen, C. T. and R. M. Pytkowitz (1979): On the total CO2-titration alkalinity-oxygen system in the Pacific Ocean. Nature, 281, 362–365.

    Google Scholar 

  • Conkright, M. E., S. Levitus, T. O'Brien, T. P. Boyer, C. Stephens, D. Johnson, L. Stathoplos, O. Baranova, J. Antonov, R. Gelfeld, J. Burney, J. Rochester and C. Forgy (1998): World Ocean Database 1998 CD-ROM Data Set Documentation. National Oceanographic Data Center, Silver Spring, MD.

    Google Scholar 

  • Fujii, M., M. Ikeda and Y. Yamanaka (2000): Roles of physical processes in the carbon cycle using a simplified physical model. J. Oceanogr., 56, 655–666.

    Article  Google Scholar 

  • Honjo, S. (1996): Fluxes of particles to the interior of the open oceans. p. 91–154. In Particle Flux in the Ocean, ed. by V. Ittekkot et al., John Wiley, New York.

    Google Scholar 

  • Iglesias-Rodirguez, M. D., C. Brown, S. C. Doney, J. Kleypas, D. Kolber, Z. Kolber, P. K. Hayes and P. G. Falkowski (2002): Representing key phytoplankton functional groups in ocean carbon cycle models: Coccolithophores. Global Biogeochem. Cycles, 16, doi:10.1029/001GB001454.

    Google Scholar 

  • International Panel on Climate Change (2001): Climate Change 2001: The Scientific Basis, ed. by J. T. Houghton, Y. Ding, D. J. Griggs, M. Mouguer, P. J. van der Linden, X. Dai, K. Maskell and C. A. Johnson, Cambridge Univ. Press, Cambridge, U.K., 881 pp.

    Google Scholar 

  • Lee, K. (2001): Global net community production estimated from the annual cycle of surface water total dissolved inorganic carbon. Limnol. Oceanogr., 46, 1287–1297.

    Google Scholar 

  • Li, Y. H., T. Takahashi and W. S. Broecker (1969): Degree of saturation of CaCO3 in the oceans. J. Geophys. Res., 74, 5507–5525.

    Google Scholar 

  • Maier-Reimer, E. (1993): Geochemical cycles in an ocean general circulation model, Preindustrial tracer distributions. Global Biogeochem. Cycles, 7, 645–677.

    Google Scholar 

  • Martin, J. H., G. A. Knauer, D. M. Karl and W. W. Broenkow (1987): VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res., 34, 267–285.

    Article  Google Scholar 

  • Mehrbach, C., C. H. Culberson, J. E. Hawley and R. M. Pytkowicz (1973): Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr., 18, 897–906.

    Google Scholar 

  • Milliman, J. D., P. J. Troy, W. M. Balch, A. K. Adams, Y.-H. Li and F. T. MacKenzie (1999): Biologically mediated dissolution of calcium carbonate above the chemical lysocline? Deep-Sea Res. Part I, 46, 1653–1669.

    Google Scholar 

  • Murnane, R., J. L. Sarmiento and C. L. Quere (1999): Spatial distribution of air-sea CO2 fluxes and the interhemispheric transport of carbon by the oceans. Global Biogeochem. Cycles, 13, 287–305.

    Article  Google Scholar 

  • Najjar, R. G. and J. C. Orr (1998): Design of OCMIP-2 simulations of chlorofluorocarbons, the solubility pump and common biogeochemistry. 19 pp.

  • Packard, T. T., M. Denis, M. Rodier and P. Garfield (1988): Deep ocean metabolic CO2 production: Calculations from ETS activity. Deep-Sea Res., 35, 371–382.

    Google Scholar 

  • Redfield, A. C., B. H. Ketchum and F. A. Richards (1963): The influence of organisms on the composition of sea-water. p. 26–77. In The Sea, Vol. 2, ed. by M. N. Hill, Interscience, New York.

    Google Scholar 

  • Sarmiento, J. L., P. Monfray, E. Maier-Reimer, O. Aumont, R. Murnane and J. Orr (2000): Air-sea CO2 fluxes and carbon transport: A comparison of three ocean general circulation models. Global Biogeochem. Cycles, 14, 1267–1281.

    Article  Google Scholar 

  • Sarmiento, J. L., J. Dunne, A. Gnanadesikan, R. M. Key, K. Matsumoto and R. Slater (2002): A new estimate of the CaCO3 to organic carbon export ratio. Global Biogeochem. Cycles, 16, 1107, doi: 10.1029/2002GB001919.

    Article  Google Scholar 

  • Shaffer, G. (1989): A model of biogeochemical cycling of phosphorus, nitrogen, oxygen, and sulphur in the ocean: One step toward a global climate model. J. Geophys. Res., 94, 1979–2004.

    Google Scholar 

  • Shaffer, G. (1996): Biogeochemical cycling in the global ocean, 2. New production, Redfield ratios, and remineralization in the organic pump. J. Geophys. Res., 101, 3723–3745.

    Article  Google Scholar 

  • Tsunogai, S. and S. Noriki (1991): Particulate fluxes of carbonate and organic carbon in the ocean. Is the marine biological activity working as a sink of the atmospheric carbon?, Tellus, 43B, 256–266.

    Google Scholar 

  • Volk, T. and M. I. Hoffert (1985): Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. p. 99–110. In The Carbon Cycle and Atmospheric CO 2 : Natural Variations Archean to Present, ed. by E. T. Sundquest and W. S. Broecker, Geophys. Monogr. Ser., 32, AGU, Washington, D.C.

    Google Scholar 

  • Weiss, R. F. (1974): Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Mar. Chem., 2, 203–215.

    Article  Google Scholar 

  • Yamanaka, Y. and E. Tajika (1996): The role of the vertical fluxes of particulate organic matter and calcite in the oceanic carbon cycle: Studies using an ocean biogeochemical general circulation model. Global Biogeochem. Cycles, 10, 361–382.

    Article  Google Scholar 

  • Yamanaka, Y. and E. Tajika (1997): Role of dissolved organic matter in the marine biogeochemical cycle: Studies using an ocean biogeochemical general circulation model. Global Biogeochem. Cycles, 11, 599–612.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Fujii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujii, M., Ikeda, M. & Yamanaka, Y. Roles of Biogeochemical Processes in the Oceanic Carbon Cycle Described with a Simple Coupled Physical-Biogeochemical Model. J Oceanogr 61, 803–815 (2005). https://doi.org/10.1007/s10872-006-0001-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-006-0001-6

Keywords

Navigation