Journal of Oceanography

, Volume 61, Issue 5, pp 803–815 | Cite as

Roles of Biogeochemical Processes in the Oceanic Carbon Cycle Described with a Simple Coupled Physical-Biogeochemical Model

  • Masahiko Fujii
  • Motoyoshi Ikeda
  • Yasuhiro Yamanaka


To evaluate the contribution of biogeochemical processes to the oceanic carbon cycle and to calculate the ratio of calcium carbonate to organic carbon downward export, we have incorporated biological and alkalinity pumps in the yoked high-latitude exchange/interior diffusion-advection (YOLDA) model. The biogeochemical processes are represented by four parameters. The values of the parameters are tuned so that the model can reproduce the observed phosphate and alkalinity distributions in each oceanic region. The sensitivity of the model to the biogeochemical parameters shows that biological production rates in the euphotic zone and decomposition depths of particulate matters significantly influence horizontal and vertical distributions of biogeochemical substances. The modeled vertical fluxes of particulate organic phosphorus and calcium carbonate are converted to vertical carbon fluxes by the biological pump and the alkalinity pump, respectively. The downward carbon flux from the surface layer to the deep layer in the entire region is estimated to be 3.36 PgC/yr, which consists of 2.93 PgC/yr from the biological pump and 0.43 PgC/yr from the alkalinity pump, which is consistent with previous studies. The modeled rain ratio is higher with depth and higher in the Pacific and Indian Oceans than in the Atlantic Ocean. The global rain ratio at the surface layer is calculated to be 0.14 to 0.15. This value lies between the lower and higher ends of the previous estimates, which range widely from 0.05 to 0.25. This study indicates that the rain ratio is unlikely to be higher than 0.15, at least in the surface waters.


Carbon cycle physical-biogeochemical model biological pump alkalinity pump rain ratio 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Archer, D., D. Lea and N. Mahowald (2000): What caused the glacial/interglacial atmospheric pCO2 cycles? Rev. Geophys., 38, 159–189.CrossRefGoogle Scholar
  2. Aumont, O. (1998): Etude du cycle naturel du carbone dans un modele 3D de l'ocean mondial. Doctrat thesis, Univite Paris VI.Google Scholar
  3. Bacastow, R. and E. Maier-Reimer (1990): Ocean-circulation model of the carbon cycle. Clim. Dyn., 4, 95–125.CrossRefGoogle Scholar
  4. Betzer, P. R., W. J. Showers, E. A. Laws, C. D. Winn, G. R. DiTullio and P. M. Kroopnick (1984): Primary productivity and particle fluxes on a transect of the equator at 153°W in the Pacific Ocean. Deep-Sea Res., 31, 1–11.CrossRefGoogle Scholar
  5. Broecker, W. S. (1971): Calcite accumulation rates and glacial to interglacial changes in oceanic mixing. p. 239–265. In The Late Cenozic Glacial Ages, ed. by K. K. Turekian, Yale Univ. Press, New Haven, Conn.Google Scholar
  6. Broecker, W. S. and T.-H. Peng (1982): Tracers in the Sea. Lamont-Doherty Geol. Obs., Palisades, New York, 690 pp.Google Scholar
  7. Brown, C. W. and J. A. Yoder (1994): Coccolithophorid blooms in the global ocean. J. Geophys. Res., 99, 7467–7482.Google Scholar
  8. Buesseler, K. O. (1991): Do upper-ocean sediment traps provide an accurate record of particle flux? Nature, 353, 4420–4423.CrossRefGoogle Scholar
  9. Chen, C. T. and R. M. Pytkowitz (1979): On the total CO2-titration alkalinity-oxygen system in the Pacific Ocean. Nature, 281, 362–365.Google Scholar
  10. Conkright, M. E., S. Levitus, T. O'Brien, T. P. Boyer, C. Stephens, D. Johnson, L. Stathoplos, O. Baranova, J. Antonov, R. Gelfeld, J. Burney, J. Rochester and C. Forgy (1998): World Ocean Database 1998 CD-ROM Data Set Documentation. National Oceanographic Data Center, Silver Spring, MD.Google Scholar
  11. Fujii, M., M. Ikeda and Y. Yamanaka (2000): Roles of physical processes in the carbon cycle using a simplified physical model. J. Oceanogr., 56, 655–666.CrossRefGoogle Scholar
  12. Honjo, S. (1996): Fluxes of particles to the interior of the open oceans. p. 91–154. In Particle Flux in the Ocean, ed. by V. Ittekkot et al., John Wiley, New York.Google Scholar
  13. Iglesias-Rodirguez, M. D., C. Brown, S. C. Doney, J. Kleypas, D. Kolber, Z. Kolber, P. K. Hayes and P. G. Falkowski (2002): Representing key phytoplankton functional groups in ocean carbon cycle models: Coccolithophores. Global Biogeochem. Cycles, 16, doi:10.1029/001GB001454.Google Scholar
  14. International Panel on Climate Change (2001): Climate Change 2001: The Scientific Basis, ed. by J. T. Houghton, Y. Ding, D. J. Griggs, M. Mouguer, P. J. van der Linden, X. Dai, K. Maskell and C. A. Johnson, Cambridge Univ. Press, Cambridge, U.K., 881 pp.Google Scholar
  15. Lee, K. (2001): Global net community production estimated from the annual cycle of surface water total dissolved inorganic carbon. Limnol. Oceanogr., 46, 1287–1297.Google Scholar
  16. Li, Y. H., T. Takahashi and W. S. Broecker (1969): Degree of saturation of CaCO3 in the oceans. J. Geophys. Res., 74, 5507–5525.Google Scholar
  17. Maier-Reimer, E. (1993): Geochemical cycles in an ocean general circulation model, Preindustrial tracer distributions. Global Biogeochem. Cycles, 7, 645–677.Google Scholar
  18. Martin, J. H., G. A. Knauer, D. M. Karl and W. W. Broenkow (1987): VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res., 34, 267–285.CrossRefGoogle Scholar
  19. Mehrbach, C., C. H. Culberson, J. E. Hawley and R. M. Pytkowicz (1973): Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr., 18, 897–906.Google Scholar
  20. Milliman, J. D., P. J. Troy, W. M. Balch, A. K. Adams, Y.-H. Li and F. T. MacKenzie (1999): Biologically mediated dissolution of calcium carbonate above the chemical lysocline? Deep-Sea Res. Part I, 46, 1653–1669.Google Scholar
  21. Murnane, R., J. L. Sarmiento and C. L. Quere (1999): Spatial distribution of air-sea CO2 fluxes and the interhemispheric transport of carbon by the oceans. Global Biogeochem. Cycles, 13, 287–305.CrossRefGoogle Scholar
  22. Najjar, R. G. and J. C. Orr (1998): Design of OCMIP-2 simulations of chlorofluorocarbons, the solubility pump and common biogeochemistry. 19 pp.Google Scholar
  23. Packard, T. T., M. Denis, M. Rodier and P. Garfield (1988): Deep ocean metabolic CO2 production: Calculations from ETS activity. Deep-Sea Res., 35, 371–382.Google Scholar
  24. Redfield, A. C., B. H. Ketchum and F. A. Richards (1963): The influence of organisms on the composition of sea-water. p. 26–77. In The Sea, Vol. 2, ed. by M. N. Hill, Interscience, New York.Google Scholar
  25. Sarmiento, J. L., P. Monfray, E. Maier-Reimer, O. Aumont, R. Murnane and J. Orr (2000): Air-sea CO2 fluxes and carbon transport: A comparison of three ocean general circulation models. Global Biogeochem. Cycles, 14, 1267–1281.CrossRefGoogle Scholar
  26. Sarmiento, J. L., J. Dunne, A. Gnanadesikan, R. M. Key, K. Matsumoto and R. Slater (2002): A new estimate of the CaCO3 to organic carbon export ratio. Global Biogeochem. Cycles, 16, 1107, doi: 10.1029/2002GB001919.CrossRefGoogle Scholar
  27. Shaffer, G. (1989): A model of biogeochemical cycling of phosphorus, nitrogen, oxygen, and sulphur in the ocean: One step toward a global climate model. J. Geophys. Res., 94, 1979–2004.Google Scholar
  28. Shaffer, G. (1996): Biogeochemical cycling in the global ocean, 2. New production, Redfield ratios, and remineralization in the organic pump. J. Geophys. Res., 101, 3723–3745.CrossRefGoogle Scholar
  29. Tsunogai, S. and S. Noriki (1991): Particulate fluxes of carbonate and organic carbon in the ocean. Is the marine biological activity working as a sink of the atmospheric carbon?, Tellus, 43B, 256–266.Google Scholar
  30. Volk, T. and M. I. Hoffert (1985): Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. p. 99–110. In The Carbon Cycle and Atmospheric CO 2 : Natural Variations Archean to Present, ed. by E. T. Sundquest and W. S. Broecker, Geophys. Monogr. Ser., 32, AGU, Washington, D.C.Google Scholar
  31. Weiss, R. F. (1974): Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Mar. Chem., 2, 203–215.CrossRefGoogle Scholar
  32. Yamanaka, Y. and E. Tajika (1996): The role of the vertical fluxes of particulate organic matter and calcite in the oceanic carbon cycle: Studies using an ocean biogeochemical general circulation model. Global Biogeochem. Cycles, 10, 361–382.CrossRefGoogle Scholar
  33. Yamanaka, Y. and E. Tajika (1997): Role of dissolved organic matter in the marine biogeochemical cycle: Studies using an ocean biogeochemical general circulation model. Global Biogeochem. Cycles, 11, 599–612.CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan/TERRAPUB/Springer 2005

Authors and Affiliations

  • Masahiko Fujii
    • 1
  • Motoyoshi Ikeda
    • 1
    • 2
  • Yasuhiro Yamanaka
    • 1
    • 2
  1. 1.Graduate School of Environmental Earth ScienceHokkaido UniversityKita-ku, SapporoJapan
  2. 2.Frontier Research System for Global ChangeShowa-machi, Kanazawa-ku, YokohamaJapan

Personalised recommendations