Journal of Oceanography

, Volume 61, Issue 4, pp 795–801 | Cite as

Effect of Salinity on Estimating Geostrophic Transport of the Indonesian Throughflow along the IX1 XBT Section

Short Contribution


Geostrophic transport of the Indonesian Throughflow (ITF) is estimated from optimally-interpolated temperature data along a frequently repeated expendable bathythermograph (XBT) section between Fremantle, Australia and Sunda Strait, Indonesia and from two historical temperature-salinity (T/S) relationship products, CSIRO Atlas for Regional Seas (CARS) and Levitus (1982). The annual mean ITF geostrophic transport relative to 400 m during 1984–2001 is estimated to be 4.6 Sv using the CARS T/S relationship, which is about 20% higher than that found using the Levitus T/S relationship. This transport increment is due to the fact that the CARS T/S relationship, which incorporates more recent hydrographic data, better resolves the low-salinity signature of the ITF water. Isothermal averaging in the CARS T/S relationship may also improve representations of the water mass signatures in deep layers.


Indonesian Throughflow geostrophic transport T/S relationship XBT data heat transport 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bray, N. A., S. E. Wijffels, J. C. Chong, M. Fieux, S. Hautala, G. Meyers and W. M. L. Morawitz (1997): Characteristics of the Indo-Pacific throughflow in the eastern Indian Ocean. Geophys. Res. Lett., 24, 2569–2572.CrossRefGoogle Scholar
  2. Conkright, M. E., R. A. Locarnini, H. E. Garcia, T. D. O’Brien, T. P. Boyer, C. Stephens and J. I. Antonov (2002): World Ocean Atlas 2001: Objective Analyses, Data Statistics, and Figures, CD-ROM, Documentation. National Oceanographic Data Center, Silver Spring, MD, 17 pp.Google Scholar
  3. Dunn, J. R. and K. R. Ridgway (2002): Mapping ocean properties in regions of complex topography. Deep-Sea Res., Part I, 49, 591–604.Google Scholar
  4. Gordon, A. L. (1986): Interocean exchange of thermocline water. J. Geophys. Res., 91, 5037–5046.Google Scholar
  5. Masumoto, Y. and G. Meyers (1998): Forced Rossby waves in the southern tropical Indian Ocean. J. Geophys. Res., 103, 27,589–27,602.Google Scholar
  6. Meyers, G. (1996): Variation of Indonesian throughflow and the El Nino-Southern Oscillation. J. Geophys. Res., 101, 12,255–12,263.Google Scholar
  7. Meyers, G. and L. Pigot (1999): Analysis of frequently repeated XBT lines in the Indian Ocean. Australia CSIRO Marine Laboratories Report, No. 238, 43 pp.Google Scholar
  8. Meyers, G., R. J. Bailey and A. P. Worby (1995): Geostrophic transport of Indonesian throughflow. Deep-Sea Res., Part I, 42, 1163–1174.Google Scholar
  9. Phillips, H. E., S. E. Wijffels and M. Feng (2005): Interannual variability in the freshwater content of the Indonesian-Australian Basin. Geophys. Res. Lett., 32(3), L03603.CrossRefGoogle Scholar
  10. Ridgway, K. R., J. R. Dunn and J. L. Wilkin (2002): Ocean interpolation by 4-dimensional weighted least squares—application to the waters around Australia. J. Atmos. Ocean. Tech., 19, 1357–1375.CrossRefGoogle Scholar
  11. Sprintall, J., S. Wijffels, T. Chereskin and N. Bray (2002): The JADE and WOCE I10/IR6 Throughflow sections in the Southeast Indian Ocean. Part 2: Velocity and transports. Deep-Sea Res., Part II, 49, 1363–1389.Google Scholar
  12. Toole, J. M. (1987): Problems of interbasins and marginal sea overflow. Bull. Am. Meteor. Soc., 68, 136–140.Google Scholar
  13. Wijffels, S. and G. Meyers (2004): An intersection of oceanic wave guides: variability in the Indonesian Throughflow. J. Phys. Oceanogr., 34, 1232–1253.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Yun Liu
    • 1
  • Ming Feng
    • 2
  • John Church
    • 3
  • Dongxiao Wang
    • 1
  1. 1.LED, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
  2. 2.CSIRO Marine ResearchFloreatAustralia
  3. 3.CSIRO Marine ResearchHobartAustralia

Personalised recommendations