Advertisement

Journal of Oceanography

, Volume 61, Issue 4, pp 789–794 | Cite as

Least-Squares Estimation of Bottom Topography Using Horizontal Velocity Measurements in the Tsushima/Korea Straits

  • Naoki Hirose
Short Contribution

Abstract

Several bathymetric data sets are compared and assessed with constraints of an ocean current model and velocity observations. The root-mean-square (rms) differences among the data sets reach 20 m in the shallow Tsushima/Korea Straits. The numerical experiments to simulate the Tsushima Warm Current are performed using four different topography data sets. The JTOPO1 data (MIRC, 2003) give the smallest rms difference to long-term horizontal velocity observations. Several least-squares combinations of the topography data sets are then sought to minimize the rms difference between the observed and modeled barotropic velocities. Most of the data sets reveal a large bias of 30–60 m at the Western Channel compared to independent sounding depths

Keywords

Bathymetry Tsushima/Korea Straits Tsushima Warm Current ADCP measurements OGCM inverse estimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adcroft, A., C. Hill and J. Marshall (1997): Representation of topography by shaved cells in a height coordinate ocean model. Mon. Wea. Rev., 125, 2293–2315.CrossRefGoogle Scholar
  2. Book, J. W., P. Pistek, H. Perkins, K. R. Thompson, W. J. Teague, G. A. Jacobs, M.-S. Suk, K.-I. Chang, J.-C. Lee and B. H. Choi (2004): Data assimilation modeling of the barotropic tides in the Korea/Tsushima Strait. J. Oceanogr., 60, 977–993.CrossRefGoogle Scholar
  3. Choi, B. H., K. O. Kim and H. M. Eum (2002): Digital bathymetric and topographic data for neighboring seas of Korea. J. Korean Soc. Coastal Ocean Eng., 14, 41–50 (in Korean with English abstract).Google Scholar
  4. Lee, H. J., J. H. Yoon, H. Kawamura and H.-W. Kang (2003): Comparison of RIAMOM and MOM in modeling the East Sea/Japan Sea circulation. Ocean Polar Res., 25, 287–302.Google Scholar
  5. Losch, M. and C. Wunsch (2003): Bottom topography as a control variable in an ocean model. J. Atmos. Ocean. Tech., 20, 1685–1696.CrossRefGoogle Scholar
  6. Marine Information Research Center (2003): JTOPO1—Northwestern Pacific bathymetric data with 1-minute grid. Japan Hydrographic Association. CDROM (in Japanese).Google Scholar
  7. National Geophysical Data Center (1988): ETOPO-5 Bathymetry/Topography Data, Data Announc. 88-MGG-02. Natl. Oceanic and Atmos. Admin., U.S. Dep. Commer., Boulder, Colorado.Google Scholar
  8. National Geophysical Data Center (2001): ETOPO-2 Global 2’ Elevations. Natl. Oceanic and Atmos. Admin., U.S. Dep. Commer., Boulder, Colorado.Google Scholar
  9. Sandy, R. J. (1996): The Navy’s bathymetric databases—From the Sea. Sea Tech., 37, 53–56.Google Scholar
  10. Smith, W. H. F. and D. T. Sandwell (1994): Bathymetric prediction from dense satellite altimetry and space shipboad bathymetry. J. Geophys. Res., 99, 21803–21824.CrossRefGoogle Scholar
  11. Smith, W. H. F. and D. T. Sandwell (1997): Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 1956–1962.CrossRefGoogle Scholar
  12. Takikawa, T., J.-H. Yoon and K.-D. Cho (2005): The Tsushima Warm Current through Tsushima Straits estimated from ferryboat ADCP data. J. Phys. Oceanogr. (in press).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Dynamics Simulation Research Center, Research Institute for Applied MechanicsKyushu UniversityKasuga, FukuokaJapan

Personalised recommendations