Journal of Oceanography

, Volume 61, Issue 3, pp 399–413 | Cite as

Drag Coefficient, Dynamic Roughness and Reference Wind Speed

  • Paul A. Hwang


Surface waves are the roughness element of the ocean surface. The parameterization of the drag coefficient of the ocean surface is simplified by referencing to wind speed at an elevation proportional to the characteristic wavelength. The dynamic roughness is analytically related to the drag coefficient. Under the assumption of fetch limited wave growth condition, various empirical functions of the dynamic roughness can be converted to equivalent expressions for comparison. For datasets covering a wide range of the dimensionless frequency (inverse wave age), it is important to account for the variable rate of wave development at different wave ages. As a result, the dependence of the Charnock parameter on wave age is nonmonotonic. Finally, the analysis presented here suggests that the significant wave steepness is a sensitive property of the ocean surface and a single variable normalization of the dynamic roughness using a wavelength or wave height parameter actually produces more robust functions than bi-variable normalizations using wave height and wave slope.


Drag coefficient dynamic roughness wavelength wave age dimensionless frequency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anctil, F. and M. A. Donelan (1996): Air-water momentum flux observed over shoaling waves. J. Phys. Oceanogr., 26, 1344–1353.CrossRefGoogle Scholar
  2. Babanin, A. V. and Y. P. Soloviev (1998): Field investigation of transformation of the wind wave frequency spectrum with fetch and the stage of development. J. Phys. Oceanogr., 28, 563–576.CrossRefGoogle Scholar
  3. Banner, M. L. and W. K. Melville (1976): On the separation of air flow over water waves. J. Fluid Mech., 77, 825–842.Google Scholar
  4. Burling, R. W. (1959): The spectrum of waves at short fetches. Dtsch. Hydrogr. Z., 12, 96–117.CrossRefGoogle Scholar
  5. Charnock, H. (1955): Wind stress on a water surface. Quart. J. Roy. Meteorol. Soc., 81, 639.Google Scholar
  6. Dobson, F., W. Perrie and B. Toulany (1989): On the deep-water fetch laws for wind-generated surface gravity waves. Atmos.-Ocean, 27, 210–236.Google Scholar
  7. Donelan, M. A. (1979): On the fraction of wind momentum retained by waves. p. 141–159. In Marine Forecasting, ed. by J. C. J. Nihoul, Elsevier.Google Scholar
  8. Donelan, M. A. (1990): Air-sea interaction. p. 239–292. In The Sea—Volume 9: Ocean Engineering Science, ed. by B. LeMehaute and D. M. Hanes, Wiley Interscience.Google Scholar
  9. Donelan, M. A., J. Hamilton and W. H. Hui (1985): Directional spectra of wind-generated waves. Phil. Trans. Roy. Soc. Lond., A315, 509–562.Google Scholar
  10. Donelan, M. A., F. W. Dobson, S. D. Smith and R. J. Anderson (1993): On the dependence of sea surface roughness on wave development. J. Phys. Oceanogr., 23, 2143–2149.CrossRefGoogle Scholar
  11. Hasselmann, K. et al. (1973): Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtsch. Hydrogr. Z., Suppl. A, 8, 12, 95 pp.Google Scholar
  12. Hwang, P. A. (2004): Influence of wavelength on the parameterization of drag coefficient and surface roughness. J. Oceanogr., 60, 835–841.CrossRefGoogle Scholar
  13. Hwang, P. A. (2005): Comparison of the ocean surface wind stress computed with different parameterization functions of the drag coefficient. J. Oceanogr., 61, 91–107.CrossRefGoogle Scholar
  14. Hwang, P. A. and D. W. Wang (2004): Field measurements of duration limited growth of wind-generated ocean surface waves at young stage of development. J. Phys. Oceanogr., 34, 2316–2326. (Corrigendum, 35, 268–270, 2005.)CrossRefGoogle Scholar
  15. Janssen, J. A. M. (1997): Does wind stress depend on sea-state or not?—A statistical error analysis of HEXMAX data. Bound.-Layer Meteorol., 83, 479–503.CrossRefGoogle Scholar
  16. Jones, I. S. F. and Y. Toba (eds.) (2001): Wind Stress over the Ocean. Cambridge Univ. Press, 307 pp.Google Scholar
  17. Kahma, K. K. and C. J. Calkoen (1992): Reconciling discrepancies in the observed growth of wind-generated waves. J. Phys. Oceanogr., 22, 1389–1405.CrossRefGoogle Scholar
  18. Kawai, S. (1982): Structure of air flow separation over wind wave crests. Bound.-Layer Meteorol., 23, 503–521.CrossRefGoogle Scholar
  19. Kawai, S., K. Okada and Y. Toba (1977): Support of the 3/2-power law and the guσ−4-spectral form for growing wind waves with field observation data. J. Oceanogr. Soc. Japan, 33, 137–150.Google Scholar
  20. Keller, M. R., W. C. Keller and W. J. Plant (1992): A wave tank study of the dependence of X band cross sections on wind speed and water temperature. J. Geophys. Res., 97, 5771–5792.Google Scholar
  21. Kitaigorodskii, S. A. (1973): The Physics of Air-Sea Interaction. Israel Program for Scientific Translations, Jerusalem (English translation), 237 pp.Google Scholar
  22. Kitaigorodskii, S. A. and Y. A. Volkov (1965): On the roughness parameter of the sea surface and the calculation of momentum flux in the near surface layer of the atmosphere. Izv., Atmos. Oceanic Phys., 1, 973–988.Google Scholar
  23. Makin, V. K. (2003): A note on a parameterization of the sea drag. Bound.-Layer Meteorol., 106, 593–600.CrossRefGoogle Scholar
  24. Makin, V. K. and V. N. Kudryavtsev (1999): Coupled sea surface-atmosphere model. 1. Wind over waves coupling. J. Geophys. Res., 104, 7613–7623.CrossRefGoogle Scholar
  25. Makin, V. K. and V. N. Kudryavtsev (2002): Impact of dominant waves on sea drag. Bound.-Layer Meteorol., 103, 83–99.CrossRefGoogle Scholar
  26. Merzi, N. and W. H. Graf (1985): Evaluation of the drag coefficient considering the effects of mobility of the roughness elements. Ann. Geophys., 3, 473–478.Google Scholar
  27. Miles, J. W. (1957): On the generation of surface waves by shear flow. J. Fluid Mech., 3, 185–204.Google Scholar
  28. Oost, W. A., G. J. Komen, C. M. J. Jacobs and C. Van Oort (2002): New evidence for a relation between wind stress and wave age from measurements during ASGAMAGE. Bound.-Layer Meteorol., 103, 409–438.Google Scholar
  29. Phillips, O. M. (1977): The Dynamics of the Upper Ocean. Cambridge Univ. Press, Cambridge, U.K., 336 pp.Google Scholar
  30. Schlichting, H. (1968): Boundary-Layer Theory, translated by J. Kestin. McGraw-Hill Book Co., New York, 748 pp.Google Scholar
  31. Smith, S. D., R. J. Anderson, W. A. Oost, C. Kraan, N. Maat, J. DeCosmo, K. B. Katsaros, K. L. Davidson, K. Bumke, L. Hasse and H. M. Chadwick (1992): Sea surface wind stress and drag coefficients: The HEXOS results. Bound.-Layer Meteorol., 60, 109–142.Google Scholar
  32. Stewart, R. W. (1974): The air-sea momentum exchange. Bound.-Layer Meteorol., 6, 151–167.Google Scholar
  33. Taylor, P. K. and M. J. Yelland (2001): The dependence of sea surface roughness on the height and steepness of the waves. J. Phys. Oceanogr., 31, 572–590.CrossRefGoogle Scholar
  34. Toba, Y., N. Iida, H. Kawamura, N. Ebuchi and I. S. F. Jones (1990): Wave dependence of sea-surface wind stress. J. Phys. Oceanogr., 20, 705–721.CrossRefGoogle Scholar
  35. Ueno, K. and M. Deushi (2003): A new empirical formula for the aerodynamic roughness of water surface waves. J. Oceanogr., 59, 819–831.Google Scholar
  36. Volkov, Y. (2001): The dependence on wave age. p. 206–217. In Wind Stress over the Ocean, ed. by I. S. F. Jones and Y. Toba, Cambridge Univ. Press, New York.Google Scholar
  37. Young, I. R. (1999): Wind Generated Ocean Waves. Elsevier, Amsterdam, the Netherlands, 288 pp.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Oceanography Division, Naval Research LaboratoryStennis Space CenterU.S.A.

Personalised recommendations