Synthesis, Structure and Luminescent Property of a 3D Layered-Pillared Cd(II) Metal–Organic Framework Derived from Mixed Rigid and Flexible Ligands

Abstract

A new 3D Cd(II) metal–organic framework of [Cd2(HIDC)2(bibp)1.5]n (1) was synthesized hydrothermally by the reaction of imidazole-4,5-dicarboxylic acid (H2IDC) and 4,4′-bis(imidazol-1-ylmethyl)biphenyl (bibp) with Cd(NO3)2·4H2O. Single-crystal X-ray diffraction analysis reveals that this compound crystallizes in triclinic, space group Pī with a = 9.6610(3), b = 15.5866(5), c = 16.0228(6) Ǻ, α = 110.662(3), β = 101.521(3), γ = 107.115(3)˚, V = 2029.46(15) Ǻ3, Z = 2, Dc = 1.644 g cm−3, µ = 1.113 mm−1, F(000) = 1002, the final R1 = 0.0468 and wR2 = 0.0962 for 8932 observed reflections with I > 2σ(I). In 1, the alternately interconnection of Cd(II) ions by µ2-HIDC2− and µ3-HIDC2− anions resulted in the formation of 1D [Cd2(µ2-HIDC)(µ3-HIDC)] with the right- and left-helical chains, which were further linked by the oxygen atoms derived from one of the carboxylate groups of µ3-HIDC2− anions, generating the 1D double helical chain structure of [Cd4(µ2-HIDC)2(µ3-HIDC)2] along a axis. These adjacent 1D double chains are further linked by cis-µ2-bibp ligands to form a 2D network structure of [Cd4(µ2-HIDC)2(µ3-HIDC)2(cis-µ2-bibp)2]n, which are further pillared by trans-µ2-bibp ligands to generate a 3D layered-pillared metal–organic framework architecture of [Cd4(µ2-HIDC)2(µ3-HIDC)2(cis-µ2-bibp)2(trans-µ2-bibp)]n. Furthermore, the thermal stability and luminescent property of 1 have also been investigated.

Graphic abstract

A 3D Cd(II) layered-pillared metal–organic framework was synthesized hydrothermally. This new compound displays high thermal stability and intense fluorescent emission.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Lu WG, Wei ZW, Gu ZY, Liu TF, Jihye Park JP, Tian J, Zhang MW, Zhang Q, Mathieu Bosch TG, Zhou HC (2014) Chem Soc Rev 43:5561–5593

    CAS  Article  Google Scholar 

  2. 2.

    Zhang XJ, Wang WJ, Hu ZJ, Wang GN, Uvdal K (2015) Coord Chem Rev 284:206–235

    CAS  Article  Google Scholar 

  3. 3.

    Cui YJ, Li B, He HJ, Zhou W, Chen BL, Qian GD (2016) Acc Chem Res 49:483–493

    CAS  Article  Google Scholar 

  4. 4.

    Lustig WP, Mukherjee S, Rudd ND, Desai AV, Li J, Ghosh SK (2017) Chem Soc Rev 46:3242–3285

    CAS  Article  Google Scholar 

  5. 5.

    Xie LH, Liu XM, He T, Li JR (2018) Chem 4:1911–1927

    CAS  Article  Google Scholar 

  6. 6.

    Pan L, Parker B, Huang XY, Olson DH, Lee J, Li J (2006) J Am Chem Soc 128:4180–4181

    CAS  Article  Google Scholar 

  7. 7.

    Wen HY, Chen CG, Wen HL, Mu XW, Yao K (2018) J Chem Crystallogr 48:12–18

    CAS  Article  Google Scholar 

  8. 8.

    Wang J, Lin ZJ, Ou YC, Yang NL, Zhang YH, Tong ML (2008) Inorg Chem 47:190–199

    CAS  Article  Google Scholar 

  9. 9.

    Sharif MA, Najafi GR (2019) J Chem Crystallogr 2:98–105

    Article  Google Scholar 

  10. 10.

    Gu JM, Kim WS, Huh S (2011) Dalton Trans 41:10826–10829

    Article  Google Scholar 

  11. 11.

    Yang F, Xu G, Dou YB, Wang B, Zhang H, Wu H, Zhou W, Li JR, Chen BL (2017) Nat Energy 2:877–883

    CAS  Article  Google Scholar 

  12. 12.

    Wang LVXL, Wang KC, Su B, Zou J, Xie XD, Li YB, Zhou JR HC (2017) J Am Chem Soc 139:211–217

    Article  Google Scholar 

  13. 13.

    Lu WG, Su CY, Lu TB, Jiang L, Chen JM (2006) J Am Chem Soc 128:34–35

    CAS  Article  Google Scholar 

  14. 14.

    Zou RQ, Sakurai H, Xu Q (2006) Angew Chem Int Ed 45:2542–2546

    CAS  Article  Google Scholar 

  15. 15.

    Liu YL, Kravtsov V, Larsen RW, Eddaoudi M (2006) Chem Commun 14:1488–1490

    Article  Google Scholar 

  16. 16.

    Liu YL, Kravtsov V, Eddaoudi M (2008) Angew Chem Int Ed 47:8446–8448

    CAS  Article  Google Scholar 

  17. 17.

    Alkordi MH, Liu YL, Larsen RW, Eubank JF, Eddaoudi M (2008) J Am Chem Soc 130:12639–12640

    CAS  Article  Google Scholar 

  18. 18.

    Gurunatha KL, Uemura K, Maji TK (2008) Inorg Chem 47:6578–6580

    CAS  Article  Google Scholar 

  19. 19.

    Otieno T, Gipson AM, Parkin S (2002) J Chem Crystallogr 32:81–85

    CAS  Article  Google Scholar 

  20. 20.

    Lu WG, Jiang L, Feng XL, Lu TB (2008) Cryst Growth Des 8:986–994

    CAS  Article  Google Scholar 

  21. 21.

    Chu Q, Liu GX, Huang YQ, Wang XF, Sun WY (2007) Dalton Trans 38:4302–4311

    Article  Google Scholar 

  22. 22.

    Duan XY, Li YZ, Su Y, Zang SQ, Zhu CJ, Meng QJ (2007) CrystEngComm 9:758–766

    CAS  Article  Google Scholar 

  23. 23.

    Li SL, Lan YQ, Ma JF, Yang J, Wei GH, Zhang LP, Su ZM (2008) Cryst Growth Des 8:675–684

    CAS  Article  Google Scholar 

  24. 24.

    Li SL, Lan YQ, Qin JS, Ma JF, Liu J, Yang J (2009) Cryst Growth Des 9:4142–4146

    CAS  Article  Google Scholar 

  25. 25.

    Liu HW, Lu WG (2011) Chin J Inorg Chem 27:1810–1816

    Google Scholar 

  26. 26.

    Liu M, Li XP, Li JP, Sun WH, Yang ZP, Gong FB, Chen J, Ma JS, Yang GQ (2009) Transit Met Chem 34:185–190

    Article  Google Scholar 

  27. 27.

    Liu HW, Lu WG (2010) Chin J Struct Chem 29:1416–1420

    CAS  Google Scholar 

  28. 28.

    Yu F, Yang XH, Liang ZW, Chen HL (2004) J Nanjing Univ (Nat Sci) 40:632–638

    CAS  Google Scholar 

  29. 29.

    Sheldrick GM (2015) SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallogr A71:3–8

    Google Scholar 

  30. 30.

    Sheldrick GM (2015) Acta Crystallogr C 71:3–8

    Article  Google Scholar 

  31. 31.

    Spek AL (2009) Acta Cryst D 65:148–155

    CAS  Article  Google Scholar 

  32. 32.

    Calahorro AJ, Salinas-Castillo A, Fairen-Jimenez D, Seco JM, Mendicute-Fierro C, Gómez-Ruiz S, López-Viseras ME, Rodríguez-Diéguez A (2015) Inorg Chim Acta 427:131–137

    CAS  Article  Google Scholar 

  33. 33.

    Zhong DC, Lu WG (2015) Chin J Inorg Chem 31:1177–1184

    CAS  Google Scholar 

  34. 34.

    Lu WG, Wang XB, Liu HW, Hong XL (2016) Chin J Struct Chem 35:383–391

    CAS  Google Scholar 

Download references

Acknowledgements

This study is financially supported by the Natural Science Foundation of Guangdong Province (Nos. 2015A030313750 and 2016A030307048), Characteristic Innovation Projects Guangdong Provincial Department of Education (Natural Science Category, Nos. 2014KTSCX169 and 2018KTSCX208), and the Student Innovation and Entrepreneurship Training Program of China (201710576012). Dr. Tao Yang is supported by National Science Foundation of Guangxi (2018GXNSFAA281210).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wenguan Lu.

Ethics declarations

The authors declare there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Electronic supplementary material

Below is the link to the electronic supplementary material. CCDC 1843418 contains the supplementary crystallographic data for the compound 1. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving. html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax:(+ 44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.

Supplementary material 1 (PDF 202.7 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Shi, X., Yang, T. et al. Synthesis, Structure and Luminescent Property of a 3D Layered-Pillared Cd(II) Metal–Organic Framework Derived from Mixed Rigid and Flexible Ligands. J Chem Crystallogr 51, 50–56 (2021). https://doi.org/10.1007/s10870-020-00825-6

Download citation

Keywords

  • Metal–organic framework
  • Synthesis
  • Crystal structure
  • Luminescent property