Skip to main content
Log in

Twinned α p-Aminobenzoic Acid at 106 K

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The α crystalline form of p-aminobenzoic acid is monoclinic and prone to twinning by pseudo-merohedry (a ≈ c). A structure was reported by Lai and Marsh (1967) on an almost untwinned specimen where (a-c)/σ is 36. In revisiting this structure, a sample showing twinning was obtained from the metabolites of a Streptomyces strain collected from the soil at the ancient Roman city of Pollentia on the Balearic island of Mallorca. A 106(2) K determination shows pseudo-merohedral twinning, with a = 18.5452(6), b = 3.73406(15), c = 18.5484(7) Å, β = 93.790(3)°, V = 1281.65(8) Å3, and (ac)/σ 5. The refinement included twin contributions [major domain 0.7435(15)] and produced a higher resolution structure determination. The cell contains two neutral molecules per asymmetric unit. Both form complementary carboxylic acid dimers across inversions centers of P21/n. Nitrogens are pyramidal and donate Hydrogen-bonds through one amine hydrogen; a stronger two-center N–H⋯O in one case, and a weaker three-center N–H⋯(O, O’) in the other. The molecular structure shows a pronounced quinoid distortion, and a comparison is drawn with the previous studies, an ordered β monoclinic phase, and with other structural studies.

Graphical Abstract

The α monoclinic phase of p-aminobenzoic acid crystallizes commonly as pseudo-merohedral twins, and a specimen studied at 106 K had a ≈ c within 5 esd’s, allowing an improved refinement and a more accurate molecular model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Eudes A, Bozzo GG, Waller JC, Naponelli V, Lim E-K, Bowles DJ, Gregory JF III, Hanson AD (2008) Metabolism of the folate precursor p-aminobenzoate in plants. Glucose ester formation and vacuolar storage. J Biol Chem 283:15451–15459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wegkamp A, van Oorschot W, de Vos WM, Smid EJ (2007) Characterization of the role of para-aminobenzoic acid biosynthesis in folate production by Lactococcus lactis. Appl Environ Microbiol 73(8):2673–2681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Blanchard KC (1941) The isolation of p-aminobenzoic acid from yeast. J Biol Chem 131:919–926

    Google Scholar 

  4. Lai TF, Marsh RE (1967) The crystal structure of p-aminobenzoic acid. Acta Crystallogr A 22:885–889

    Article  CAS  Google Scholar 

  5. Killean RCG, Tollin P (1965) Twinning in p-aminobenzoic acid. Acta Crystallogr A 19:482–483

    Article  CAS  Google Scholar 

  6. Groth P (1917) Chemische Kristallographie, Teil 4 p. Verlag von Wilhelm Engelmann, Leipzig, p 509

    Google Scholar 

  7. Gracin S, Rasmuson AC (2004) Polymorphism and crystallization of p-aminobenzoic acid. Cryst Growth Des 4:1013–1023

    Article  CAS  Google Scholar 

  8. Gracin S, Fischer A (2005) Redetermination of the beta-polymorph of p-aminobenzoic acid. Acta Crystallogr A E61:o1242–o1244

    Google Scholar 

  9. Sullivan RA, Davey RJ (2015) Concerning the crystal morphologies of the α and β polymorphs of p-aminobenzoic acid. CrystEngComm 17:1015–1023

    Article  CAS  Google Scholar 

  10. Compagnon I, Antoine R, Rayane D, Broyer M, Dugourd P (2003) Permanent electric dipole of gas-phase p-aminobenzoic acid. J Phys Chem A 107:3036–3039

    Article  CAS  Google Scholar 

  11. Yan T, Wang K, Duan D, Tan X, Liua B, Zou B (2014) p-Aminobenzoic acid polymorphs under high pressures. RSC Adv 4:15534–15541

    Article  CAS  Google Scholar 

  12. Koa YG, Ma PX (2012) Growth of oriented p-aminobenzoic acid crystals by directional freezing. CrystEngComm 14(23):7891–7894

    Article  CAS  Google Scholar 

  13. Athimoolan S, Natarajan S (2007) 4-Carboxyanilinium (2R,3R)-tartrate and a redetermination of the -polymorph of 4-aminobenzoic acid. Acta Crystallogr A C63:o514–o517

    Google Scholar 

  14. Kremer CB (1956) The laboratory synthesis of a simple vitamin: p-aminobenzoic acid. J Chem Educ 33(2):71–72

    Article  CAS  Google Scholar 

  15. Toroz D, Rosbottom I, Turner TD, Corzo DMC, Hammond RB, Lai X, Roberts KJ (2015) Towards an understanding of the nucleation of α-p-aminobenzoic acid from ethanolic solutions: a multi-scale approach. Faraday Discuss 179:79–114

    Article  CAS  PubMed  Google Scholar 

  16. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A A64:112–122

    Article  CAS  Google Scholar 

  17. Herbst-Irmer R, Sheldrick GM (1998) Refinement of twinned structures with SHELXL97. Acta Crystallogr B54:443–449

    Article  CAS  Google Scholar 

  18. Farrugia LJ (2012) WinGX and ORTEP for Windows: an update. J Appl Crystallogr 45:849–854

    Article  CAS  Google Scholar 

  19. Mercury ver. 3.6. Cambridge Crystallographic Data Center (2015)

  20. Black JFB, Davey RJ, Gowers RJ, Yeoh A (2015) Ostwald’s rule and enantiotropy: polymorph appearance in the crystallisation of p-aminobenzoic acid. CrystEngComm 17:5139–5142

    Article  CAS  Google Scholar 

  21. Brown CJ (1968) The crystal structure of anthranilic acid. Proc R Soc A 302:185–189

    Article  Google Scholar 

  22. Kumar SS, Nangia A (2014) A solubility comparison of neutral and zwitterionic polymorphs. Cryst Growth Des 14(4):1865–1881

    Article  CAS  Google Scholar 

  23. Etter MC, MacDonald JC (1990) Graph-set analysis of Hydrogen-bond patterns in organic crystals. Acta Crystallogr A B46:256–262

    Article  CAS  Google Scholar 

  24. Lago AF, Davalos JZ, deBrito AN (2007) A density functional and ab initio investigation of the p-aminobenzoic acid molecule. Chem Phys Lett 443:232–236

    Article  CAS  Google Scholar 

  25. Bürgi H-B, Dunitz JD (1994) Structural correlation, vol 2, VCH Publishers, New York, pp 767–784

    Book  Google Scholar 

  26. Schultz G, Portalone G, Ramondo F, Domenicano A, Hargittai I (1996) Molecular structure of aniline in the gaseous phase: a concerted study by electron diffraction and ab initio molecular orbital calculations. Struct Chem 7:59–71

    Article  CAS  Google Scholar 

  27. Lister DG, Tyler JK, Tyler JH, Hog JH, Larsen NW (1974) The microwave spectrum, structure and dipole moment of aniline. J Mol Struct 23:253–264

    Article  CAS  Google Scholar 

  28. Feld R, Lehmann MS, Muir KW, Speakman JC (1981) The crystal structure of benzoic acid: a redetermination with X-rays at room temperature. Zeitschrift fur Kristallographie 157(3/4):215–231

    CAS  Google Scholar 

  29. Wang Y, Saebø S, Pittman CU Jr (1992) The structure of aniline by ab initio studies. J Mol Struct 281(2–3):91–98

    Google Scholar 

Download references

Acknowledgements

We thank the custodians of the Pollentia archeological site, Miguel Ángel Cau Ontiveros, Esther Chávez Álvarez, Fr. Richard Rutherford for access and guidance. We thank the University of Portland and the College of Arts and Sciences for summer research support for the Pollentia Undergraduate Research Expedition to Mallorca, Spain, and the National Science Foundation for support of crystallographic studies (MRI-0604188) and for LCMS equipment (MRI-0621648).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward J. Valente.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoffman, A., Valente, E.J. Twinned α p-Aminobenzoic Acid at 106 K. J Chem Crystallogr 49, 58–64 (2019). https://doi.org/10.1007/s10870-019-00771-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-019-00771-y

Keywords

Navigation