Skip to main content
Log in

Two Achiral Isomers of Chloronitropyridine Crystallize as Polar Materials with Different Molecular Packing Motifs Based on Similar Intermolecular Interactions

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The molecular structures of two of the ten possible isomers of chloronitropyridine have been studied by spectroscopic techniques and single crystal X-ray diffraction. The structures of 2-chloro-4-nitropyridine (1) [monoclinic, Pc, a = 3.7711(14) Å, b = 8.919(3) Å, c = 9.324(3) Å, β = 99.506(5)°] and 5-chloro-2-nitropyridine (2) [triclinic, P1, a = 3.7559(13) Å, b = 6.071(2) Å, c = 6.939(2) Å, α = 85.703(5)°, β = 89.619(5)°, γ = 75.189(5)°] reveal that the isomers crystallize in non-centrosymmetric space groups with different molecular packing motifs based on similar intermolecular interactions. Each compound packs into molecular sheets via short chlorine–oxygen contacts and C–H⋯X (X = O, N) interactions of the nitro oxygen atoms and the pyridine nitrogen atom. The sheets further pack with an offset face-to-face π-stacking geometrical arrangement of the aromatic rings to form the three-dimensional structures. Achiral 2-chloro-4-nitropyridine (1) crystallizes as a polar material in the non-centrosymmetric and non-enantiomorphous space group Pc while the isomeric achiral compound 5-chloro-2-nitropyridine (2) forms a polar material that approximates inversion symmetry in the non-centrosymmetric enantiomorphous space group P1.

Graphical Abstract

The molecular structures of achiral 2-chloro-4-nitropyridine and 5-chloro-2-nitropyridine have been studied by X-ray diffraction revealing that they crystallize as polar materials. The structures have different packing motifs based on similar intermolecular interactions consisting of π-stacked molecular sheets formed by chlorine–oxygen contacts and C–H⋯X (X = O, N) interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sheldrick GM (2015) Acta Crystallogr A 71:3–8

    Article  CAS  Google Scholar 

  2. Sheldrick GM (2015) Acta Crystallogr C 71:3–8

    Article  CAS  Google Scholar 

  3. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) J Appl Crystallogr 41:466–470

    Article  CAS  Google Scholar 

  4. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Crystallogr 42:339–341

    Article  CAS  Google Scholar 

  5. Parsons S, Flack HD, Wagner T (2013). Acta Crystallogr B69:249–259

    Google Scholar 

  6. Sasaki T, Ida Y, Hisaki I, Tsuzuki S, Tohnai N, Coquerel G, Sato H, Miyata M (2016) Cryst Growth Des 16:1626–1635

    Article  CAS  Google Scholar 

  7. Pidcock E (2005) Chem Commun 27:3457–3459

    Article  CAS  Google Scholar 

  8. Tsunekawa T, Goto T, Egawa K (1987) Pyridine-based organic nonlinear optical materials. Jpn Kokai Tokkyo Koho JP 62272231:A 19871126

  9. Dumur F, Dumas E, Mayer CR (2007) Targets in heterocyclic systems, vol 11. Italian Society of Chemistry, Rome, pp. 70–103

    Google Scholar 

  10. Spitzner D (2005) Science of synthesis, vol 15. Thieme, Stuttgart, pp 11–284

    Google Scholar 

  11. Scriven EFV (1984) Comprehensive heterocyclic chemistry, vol 2. Pergamon, New York, pp 165–314

    Book  Google Scholar 

  12. Sherman AR, Murugan R (2015) Adv Heterocycl Chem 114:227–269

    Article  CAS  Google Scholar 

  13. Ng SW (2010) Acta Crystallogr E 66:o1020

    Article  CAS  Google Scholar 

  14. Ng SW (2010) Acta Crystallogr E 66:o848

    Article  CAS  Google Scholar 

  15. Jankowiak A, Kaszynski P (2009) J Org Chem 74:7441–7448

    Article  CAS  PubMed  Google Scholar 

  16. Talik Z, Talik T (1962) Rocz Chem 36:417–422

    CAS  Google Scholar 

  17. Talik T, Talik Z (1962) Rocz Chem 36:539–544

    CAS  Google Scholar 

  18. Bystritskaya MG, Kirsanov AV (1940) Zh Obshch Khim 10:1101–1107

    CAS  Google Scholar 

  19. Gan Z, Hu B, Song Q, Xu Y (2012) Synthesis 44:1074–1078

    Article  CAS  Google Scholar 

  20. Rybalova TV, Sedova VF, Gatilov YV, Shkurko OP (1998) Khim Geterotsikl Soedin 10:1367

    Google Scholar 

  21. Vasylyeva V, Hofmann DWM, Merz K (2016) Struct Chem 27:331–339

    Article  CAS  Google Scholar 

  22. Mootz D, Wussow HG (1981) J Chem Phys 75:1517–1522

    Article  CAS  Google Scholar 

  23. Montgomery MJ, O’Connor TJ, Tanski JM (2015) Acta Crystallogr E71:852–856

    Google Scholar 

  24. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, London

    Google Scholar 

  25. Lueckheide M, Rothman N, Ko B, Tanski JM (2013) Polyhedron 58:79–84

    Article  CAS  Google Scholar 

  26. Hunter CA, Saunders JKM (1990) J Am Chem Soc 112:5525–5534

    Article  CAS  Google Scholar 

  27. Bondi A (1964) J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  28. Spek AL (2009) Acta Crystallogr D65:148–155

    Google Scholar 

Download references

Acknowledgements

The authors thank Vassar College for supporting this work and gratefully acknowledge support for the X-ray diffraction and NMR facilities at Vassar College from the National Science Foundation under Grant Nos. 0521237 and 1526982, respectively. Thanks to Dr. Karen Wovkulich for instrumentation support and a reviewer for generous and helpful comments. Alexander Preneta is acknowledged for providing some spectroscopic data on (1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph M. Tanski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merritt, H., Tanski, J.M. Two Achiral Isomers of Chloronitropyridine Crystallize as Polar Materials with Different Molecular Packing Motifs Based on Similar Intermolecular Interactions. J Chem Crystallogr 48, 109–116 (2018). https://doi.org/10.1007/s10870-018-0717-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-018-0717-3

Keywords

Navigation