Journal of Chemical Crystallography

, Volume 47, Issue 1–2, pp 47–58 | Cite as

Crystal Structure Analysis and Topological Study of Non-covalent Interactions in 2,2-Biimidazole:Salicylic Acid 2:1 Co-crystal

  • Julia Bruno-Colmenarez
  • Reinaldo Atencio
  • Marinel Quintero
  • Luis Seijas
  • Rafael Almeida
  • Luis Rincón
Original Paper


The 1:2 ratio salicylic acid/biimidazole co-crystal is studied in this work. I This compound was obtained from a flux with methanol followed by slow evaporation, rendering colorless plates, that crystallize in the monoclinic system, space group P21/n, with unit cell parameters a = 12.0969 (4) Å, b = 5.0714 (1) Å and c = 15.4825 (4) Å, β = 99.007(2)º, and V = 938.11(4) Å3. The experimental characterization is achieved through X-ray diffraction structure analyzes, infrared spectroscopy (FTIR) and thermal analysis (TGA/DSC). This characterization is complemented by theoretical calculations at the DFT/6–31++G(d,p) level, employing the HCTH407 functional. Geometrical optimizations are performed and a detailed Non-Covalent-Index analysis is carried out. It is found that the crystal structure is maintained by conventional and non-conventional hydrogen bonds, of the type N–H···O, O–H···N and C–H···O hydrogen bonds responsible for the formation of planar supramolecular units forming R2 2(9) rings and slip-stacked packing, which, through DFT/HCTH calculations, are shown to stabilize the structure.

Graphical Abstract

The synthesis and crystal structure of the title compound, C10H9N2O3, is reported. The bimidazole and salicylic acid form a co-crystal in a 1:2 ratio. Its crystal structure is maintained by conventional and non-conventional hydrogen bonds. Two conventional hydrogen bonds, of the type N–H···O and O–H···N, form planar supramolecular unit through R2 2(9) rings, the DFT/HCTH calculations shows us that the R2 2(9) rings formation stabilize the supramolecular structure.


Crystal structure Hydrogen bonds DFT calculations NCI analysis 



The authors thank the financial support to CDCHTA-ULA (Grant No. C-1921-15-08-AA).


  1. 1.
    Cromer D, Ryan R, Storm C (1987) Structure of 2,2′-biimidazole. Acta Cryst 43:1435–1437Google Scholar
  2. 2.
    Etter M (1990) Encoding and decoding hydrogen-bond patterns of organic-compounds. Acc Chem Res 23:120–126CrossRefGoogle Scholar
  3. 3.
    Desiraju G (1989) Crystal engineering: the design of organic solids. Elservier, AmsterdamGoogle Scholar
  4. 4.
    Desiraju G, Steiner T (1999) The weak hydrogen bond. Oxford University Press, OxfordGoogle Scholar
  5. 5.
    Lakshmi, B., Samuelson, A. G., Jovan Jose, K. V., Gadre, S. R., Arunan E. (2005) Is there a hydrogen bond radius? Evidence from microwave spectroscopy, neutron scattering and X-ray diffraction results. New J Chem 29:371–377CrossRefGoogle Scholar
  6. 6.
    Scoles G (ed) (1992) Atomic and molecular beam methods. Oxford University Press, New YorkGoogle Scholar
  7. 7.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, OxfordGoogle Scholar
  8. 8.
    Grabowski SJ (2007) Relationships between QTAIM and the decomposition of the interaction energy—comparison of different kinds of hydrogen bond. In: Matta CF, Boyd RJ (eds) The quantum theory of atoms in molecules: from solid state to DNA and drug design, Wiley, DarmstadtGoogle Scholar
  9. 9.
    Rincon L, Almeida R, García-Aldea D, Diez y Riega H (2001) Hydrogen bond cooperativity and electron delocalization in hydrogen fluoride clusters. J Chem Phys 114:5552–5562CrossRefGoogle Scholar
  10. 10.
    Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403CrossRefGoogle Scholar
  11. 11.
    Alikhani ME, Fuster F, Silvi B (2005) What can tell the topological analysis of ELF on hydrogen bonding? Struct Chem 16:203–210CrossRefGoogle Scholar
  12. 12.
    Seijas LE, Lunar A, Rincón L, Almeida R (2017) On the electron density localization in HF cyclic clusters. J Comput Methods Sci Eng 17:5–18CrossRefGoogle Scholar
  13. 13.
    Bohórquez HJ, Boyd RJ, Matta CF (2011) Molecular model with quantum mechanical bonding information. J Chem Phys A 115:12991–12997CrossRefGoogle Scholar
  14. 14.
    Gao, X., Zhu, M. (2010) Benzoic acid-2,2′-biimidazole (2/1). Acta Cryst E66:o3124Google Scholar
  15. 15.
    Tadokoro M, Nakasuji K (2000) Hydrogen bonded 2,2′-biimidazolate transition metal complexes as a tool of crystal engineering. Coord Chem Rev 198:205–218CrossRefGoogle Scholar
  16. 16.
    Gao X, Bian L, Wei Guo S (2014) Crystal structure of 1 H,10 H-[2,20-biimidazol]-3-ium hydrogen tartrate hemihydrates. Acta Cryst E70:o1221–o1222Google Scholar
  17. 17.
    Reinaldo Atencio R, Chacón M, González T, Briceño A, Agrifoglio G, Sierraalta A (2004) Robust hydrogen-bonded self-assemblies from biimidazole complexes. Synthesis and structural characterization of [M(biimidazole)2(OH2)2] 2+ (M = Co2+, Ni2+) complexes and carboxylate modules. Dalton Trans 4:505–513CrossRefGoogle Scholar
  18. 18.
    Bruker (1998) SAINT: SAX area-detector integration, Version 5.01, Bruker AXS, MadisonGoogle Scholar
  19. 19.
    Sheldrick G (2008) A short history of SHELX. Acta Cryst A 64:112–122CrossRefGoogle Scholar
  20. 20.
    Hamprecht FA, Cohen A, Tozer DJ, Handy NC (1998) Development and assessment of new exchange-correlation functional. J Chem Phys 109:6264–6271CrossRefGoogle Scholar
  21. 21.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Rob MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, P. M. W. Gill, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian, WallingfordGoogle Scholar
  22. 22.
    Jhonson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen A, Yang W (2010) Revealing non-covalent interactions. J Am Chem Soc 132:6498–6506CrossRefGoogle Scholar
  23. 23.
    Contreras-García J, Jhonson ER, Keinan S, Chaudret R, Piquemal JP, Beratan DN, Yang W (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput 7:625–632CrossRefGoogle Scholar
  24. 24.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:864–871CrossRefGoogle Scholar
  25. 25.
    Rincon L, Almeida R, García-Aldea D (2005) A many-body energy decomposition analysis of cooperativity in hydrogen fluoride. Int J Quant Chem 102:443CrossRefGoogle Scholar
  26. 26.
    Espinosa E, Alkorta I, Elguero J, Molins E (2002) From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H···F–Y systems. J Chem Phys 117:5529–5532CrossRefGoogle Scholar
  27. 27.
    Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theory Chim Acta 44:129CrossRefGoogle Scholar
  28. 28.
    Mayer I, Salvador P (2004) Overlap populations, bond orders and valences for ‘fuzzy’ atoms. Chem Phys Lett 383:368–375CrossRefGoogle Scholar
  29. 29.
    Alonso M, Woller T, Martín-Martínez FJ, Contreras-García J, Geerlings P, De Proft F (2014) Understanding the fundamental role of π/π, σ/σ, and σ/π dispersion interactions in shaping carbon-based materials. Chem Eur J 20:4931–4941CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Julia Bruno-Colmenarez
    • 1
  • Reinaldo Atencio
    • 1
  • Marinel Quintero
    • 2
  • Luis Seijas
    • 3
  • Rafael Almeida
    • 3
  • Luis Rincón
    • 4
  1. 1.Laboratorio de Materiales para Tecnologías Emergentes (LaMTE), Centro de Investigación en Tecnología de Materiales y Ambiente (CITeMA)Instituto Venezolano de Investigaciones Científicas (IVIC)MaracaiboVenezuela
  2. 2.Departamento de Química, Facultad Experimental de CienciasLa Universidad del Zulia (LUZ)MaracaiboVenezuela
  3. 3.Laboratorio de Procesos Dinámicos en Química, Departamento de Química, Facultad de CienciasUniversidad de Los Andes (ULA)MéridaVenezuela
  4. 4.Grupo de Química Computacional y Teórica (QCT-USFQ), Dpto. de Ingeniería QuímicaUniversidad San Francisco de Quito (USFQ)QuitoEcuador

Personalised recommendations