Advertisement

Journal of Chemical Crystallography

, Volume 47, Issue 1–2, pp 40–46 | Cite as

Crystal Structure and Corrosion Inhibition Properties of Ferrocenyl- and Phenylendiamine-Iminomethylphenoxy Cobalt Complexes

  • Nadra Belhadj
  • Ali Ourari
  • Saida Keraghel
  • Bernd Schöllhorn
  • Dominique Matt
Original Paper

Abstract

The crystal structures of bis[2-(ferrocenyl-iminomethyl)phenoxy]cobalt(II) (Co II (L) 2 ) [monoclinic, a = 12.5466(3) Å, b = 10.6782(3) Å, c = 21.2695(6) Å, α = γ = 90°, β = 92.944(2)°, V = 2845.82(13) Å3, Z = 4, space group P21/c] and bis(2-[(4-dimethylamino-phenylimino)-methyl]-phenoxy) cobalt (II) (Co II (M) 2 ) [triclinic, a = 10.2916(4) Å, b = 16.4867(10) Å, c = 17.6782(11) Å, α = 114.754(2)°, β = 96.614(4)°, γ = 97.736(4), Z = 4, space group P-1] dominated by extensive hydrogen bonding such as O–H···N, N–H···O and N–H···N interactions. In both structures the central CoII is displaying a slightly distorted tetrahedral coordination sphere involving two iminoethyl-phenoxy ligands. The inhibition efficiency of the Co complexes concerning the corrosion of mild steel in acidic solution has been investigated by electrochemical impedance spectroscopy.

Graphical Abstract

The crystal structures of two bis(iminomethylphenoxy) cobalt complexes containing respectively a ferrocenyl and a phenylendiamine group are described. First results on their inhibition properties concerning the corrosion of mild steel in hydrochloric acid are reported and discussed.

Keywords

Crystal structure Cobalt Schiff base Ferrocene Phenylenediamine Corrosion inhibition Mild steel Electrochemical impedance spectroscopy 

Notes

Acknowledgements

The authors thank Dr. Lahcène Ouahab (UMR 6226 CNRS—Université de Rennes 1) for his help and would like to acknowledge the Algerian « Directions Générale de la Recherche » and the « Ministère de l’Enseignement Supérieur et la recherche Scientifique» for financial support.

References

  1. 1.
    Vigato PA, Tamburini S (2004) Coord Chem Rev 248:1717–1728CrossRefGoogle Scholar
  2. 2.
    Grigor’ev VP, Boginskaya VV (2006) Prot Met 42:583–587CrossRefGoogle Scholar
  3. 3.
    Hodnett EM, Dunn WJ (1970) J Med Chem 13: 768–70CrossRefGoogle Scholar
  4. 4.
    Jungreis E, Ben-Dor L (1964) Anal Chim Acta 30:405–407CrossRefGoogle Scholar
  5. 5.
    Erk B, Baran Y (1991) Synth React Inorg Met Org Chem 21:1321–1329CrossRefGoogle Scholar
  6. 6.
    You J, Xu QJ, Lin LR, Huang RB, Zheng LS (2009) Xiamen Daxue Xuebao Ziran Kexueban 48:236–240Google Scholar
  7. 7.
    Xie J, Qiao J, Wang L, Xie J, Qiu Y (2005) Inorg Chim Acta 358:4451–4458CrossRefGoogle Scholar
  8. 8.
    Chen L, Qiao J, Xie J, Duan L, Zhang D, Wang L, Qiu Y (2009) Inorg Chim Acta 362:2327–2333CrossRefGoogle Scholar
  9. 9.
    Zeng W, Li J, Mao Z, Hong Z, Qin S (2004) Adv Synth Catal 346:1385–1391CrossRefGoogle Scholar
  10. 10.
    Gibson VC, Gregson CKA, Halliwell CM, Long NJ, Oxford PJ, White AJP, Williams DJ (2005) Organomet Chem 690:6271–6283CrossRefGoogle Scholar
  11. 11.
    Bracci M, Ercolani C, Floris B, Bassetti M, Chiesi-Villa A, Guastini C (1990) Chem Soc Dalton Trans 4:1357–1363CrossRefGoogle Scholar
  12. 12.
    Percy GC, Thornton DA (1972) Inorg Nucl.Chem 34:3357–3367CrossRefGoogle Scholar
  13. 13.
    Ertas M, Ahsen V, Gürek A, Bekaroglu O (1987) Organomet Chem 336:183–186CrossRefGoogle Scholar
  14. 14.
    Nuth G (1885) Ber d Chem Gesell 573Google Scholar
  15. 15.
    Zolezzi S, Decinti A, Spodine E (1999) Polyhedron 18:897–904CrossRefGoogle Scholar
  16. 16.
    Prabhakaran R, Karvembu R, Hashimoto T, Shimizu K, Natarajan K (2005) Inorg Chim Acta 358:2093–2096CrossRefGoogle Scholar
  17. 17.
    Vigato PA, Tamburini S (2004) Coord Chem Rev 248:1717–2128CrossRefGoogle Scholar
  18. 18.
    Melnik M, Ondrejkovicova I, Miklos D, Segla P, Holloway CE (2007) Rev Inorg Chem 27:67–317CrossRefGoogle Scholar
  19. 19.
    Van der Berg JA, Seddon KR (2003) Cryst Growth Des 3:643–661CrossRefGoogle Scholar
  20. 20.
    M. El. Azhar, Mernari B, Traisnel M, Bentiss F, Lagrenee M (2001) Corros Sci 43:2229–2238CrossRefGoogle Scholar
  21. 21.
    Rosenfield IL (1981) Corrosion inhibitors. McGraw-Hill, New York, pp 66–67t;/bib>Google Scholar
  22. 22.
    Aytac A, Ozmen U, Kabasakaloglu M (2005) Mater Chem Phys 89:176–181CrossRefGoogle Scholar
  23. 23.
    Sorkhabi HA, Shaabani B, Seifzadeh D (2005) Appl Surf Sci 239:154–164CrossRefGoogle Scholar
  24. 24.
    H. A. Sorkhabi, B. Shaabani, D. Seifzadeh (2005) Electrochem Acta 50:3446–3452CrossRefGoogle Scholar
  25. 25.
    Keleş H, Emir DM, Keleş M (2015) Corros Sci 101:19–31CrossRefGoogle Scholar
  26. 26.
    Singh VP, Singh P, Singh AK (2011) Inorg Chim Acta 379:56–63CrossRefGoogle Scholar
  27. 27.
    G. Banerjee, S. N. Malhotra (1992) Corros Sci Eng 48:10–15CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Nadra Belhadj
    • 1
    • 2
  • Ali Ourari
    • 1
  • Saida Keraghel
    • 1
  • Bernd Schöllhorn
    • 3
  • Dominique Matt
    • 4
  1. 1.Laboratoire d’Electrochimie, d’Ingénierie Moléculaire et de Catalyse Rédox-LEIMCR, Faculté des Sciences de l’IngenieurUniversité Ferhat ABBASSétifAlgeria
  2. 2.Département de génie des procédés, Faculté de TechnologieUniversité A.MiraBejaiaAlgeria
  3. 3.Laboratoire d’Electrochimie Moléculaire, UMR CNRS 7591Université Paris DiderotParis Cedex 13France
  4. 4.Laboratoire de chimie Inorganique Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR CNRS 7177Université de StrasbourgStrasbourg CedexFrance

Personalised recommendations