Skip to main content
Log in

Synthesis and Characterization of Two New Mononuclear Complexes of Cobalt(II) with 7-Azaindole

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Two new complexes of cobalt(II) with 7-azaindole have been synthesized, and characterized by elemental analysis and FTIR spectroscopy, [(C2H5)3NH][Co(Haza)Cl3] 1, (where Haza = 7-azaindole), and [Co(Haza)2Cl2], 2. The crystal structures for 1 and 2 were determined by X-ray diffraction analysis. [(C2H5)3NH][Co(Haza)Cl3], 1, is monoclinic and crystallizes in the space group P2 1 /n with a = 12.9997 (2), b = 9.87449 (13), c = 13.9488 (2) Å, β = 104.0180 17)°. [Co(Haza)2Cl2], 2. is also monoclinic and crystallizes in the space group P2 1 /c with a = 12.453 (3), b = 9.3753 (18), c = 13.136 (3) Å, β = 98.728 (4). In both complexes the bonding to the Haza is via the pyridine N (N7), where the Haza is a neutral ligand, and the environment around the Co ions is distorted tetrahedral. Hydrogen bonding between the N1–H and Cl is present in 1 and 2, and determines the head to head alignment of the two Haza with respect to each other in 2. Additional hydrogen bonding links the cation and anion together in 1. FTIR confirms the presence of the neutral Haza in the both materials.

Graphical Abstract

Two complexes of the 7-azaindole ligand with Co(II) are reported. Hydrogen bonding in [(C2H5)3NH][Co(Haza)Cl3], including a bifurcated H-bond from N3–H to Cl2 and Cl3 is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Domínguez-Martín A, Brandi-Blanco M, Matilla-Hernandez A, El Bakkali H, Marina-Nurchi V, González-Pérez JM, Castiñeiras A, Niclós-Gutiérrez J (2013) Coord Chem Rev 257:2814–2838

    Article  Google Scholar 

  2. Przyojski JA, Kiewit ML, Fillman KL, Arman HD, Tonzetich ZJ (2015) Inorg Chem 54:9637–9645

    Article  CAS  Google Scholar 

  3. Zhao S-B, Wang S (2010) Chem Soc Rev 39:3142–3156

    Article  CAS  Google Scholar 

  4. Przyojski JA, Myers NN, Arman HD, Prosvirin A, Dunbar KR, Natarajan M, Krishnan M, Mohan S, Walmsley JA (2013) J Inorg Biochem 127:175–181

    Article  CAS  Google Scholar 

  5. Peng S-M, Lin Y-N (1986) Acta Cryst C 42:1725–1731

    Article  Google Scholar 

  6. Poitras J, Beauchamp AL (1992) Can J Chem 70: 2846–2855

    Article  CAS  Google Scholar 

  7. Balboa S, Borrás J, Brandi P, Carballo R, Castiñeiras A, Lago AB, Niclós-Gutiérrez J, Real JA (2011) Cryst Growth Des 11:4344–4352

    Article  CAS  Google Scholar 

  8. Kosaka W, Yamamoto N, Miyasaka H (2013) Inorg Chem 52:9908–9914

    Article  CAS  Google Scholar 

  9. Bland BRA, Gilfoy HJ, Vamvounis G, Robertson KN, Cameron TS, Aquino MAS (2005) Inorg Chim Acta 358:3927–3936

    Article  CAS  Google Scholar 

  10. Edema JJH, Gambarotta S, Meetsma A, van Bolhuis F, Spek AL, Smeets WJJ (1990) Inorg Chem 29:2147–2153

    Article  CAS  Google Scholar 

  11. Lee C-F, Chin K-F, Peng S-M, Che C-M (1993) J Chem Soc Dalton Trans 3:467–470

    Article  Google Scholar 

  12. Wu Q, Lavigne JA, Tao Y, D’Iorio M, Wang S (2000) Inorg Chem 39:5248–5254

    Article  CAS  Google Scholar 

  13. Sheldrick WS (1982) Z Naturforsch 37:653–656

    Google Scholar 

  14. Štarha P, Marek J, Trávníček Z (2012) Polyhedron 33:404–409

    Article  Google Scholar 

  15. Switlicka-Olszewska A, Machura B, Mrozinski J, Kalinska B, Kruszynski R, Penkala M (2014) New J Chem 38:1611–1626

    Article  CAS  Google Scholar 

  16. van Albada GA, Nur S, van der Horst MG, Mutikainen I, Turpeinen U, Reedijk J (2008) J Mol Struct 874:41–45

    Article  Google Scholar 

  17. Ruiz J, Rodriguez V, de Haro C, Espinosa A, Perez J, Janiak C (2010) Dalton Trans 39:3290–3301

    Article  CAS  Google Scholar 

  18. Ashenhurst J, Wu G, Wang S (2000) J Am Chem Soc 122:2541–2547

    Article  CAS  Google Scholar 

  19. van Albada GA, Tanase S, Mutikainen I, Turpeinen U, Reedijk J (2008) Inorg Chim Acta 361:1463–1468

    Article  Google Scholar 

  20. Chan C-K, Guo C-X, Cheung K-K, Li D, Che C-M (1994) J Chem Soc Dalton Trans 3677–3682. doi:10.1039/dt9940003677

    Google Scholar 

  21. Pogozhev D, Baudron SA, Hosseini MW (2011) Dalton Trans 40:7403–7411

    Article  CAS  Google Scholar 

  22. Kurmoo M (2009) Chem Soc Rev 38:1353–1379

    Article  CAS  Google Scholar 

  23. Kostakis GE, Perlepes SP, Blatov VA, Proserpio DM, Powell AK (2012) Coord Chem Rev 256:1246–1278

    Article  CAS  Google Scholar 

  24. Murrie M (2010) Chem Soc Rev 39:1986–1995

    Article  CAS  Google Scholar 

  25. Brookes RW, Martin RL (1975) Aust J Chem 28:1363–1366

    Article  CAS  Google Scholar 

  26. CrystalClear, User Manual, (2011) Rigaku/MSC Inc, Rigaku Corporation, The Woodlands TX

  27. Higashi T (1995) ABSCOR Rigaku Corporation. Tokyo

  28. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Crystallogr 42:339–341

    Article  CAS  Google Scholar 

  29. Sheldrick GM (2015) Acta Cryst A 71: 3–8

    Article  Google Scholar 

  30. Sheldrick GM (2008) Acta Cryst A 64, 112–122

    Article  CAS  Google Scholar 

  31. Allaire F, Beauchamp AL (1989) Inorg Chim Acta 156:241–249

    Article  CAS  Google Scholar 

  32. Karthikeyan B (2006) Spectrochim Acta A 64:1083–1087

    Article  CAS  Google Scholar 

  33. Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds Part A, 5th edn. Wiley, Hoboken p192

    Google Scholar 

  34. Spectral Database for Organic Compounds, SDBS, No. 3145

  35. van Albada GA, Tanase S, Mutikainen I, Turpeinen U, Reedijk J (2011) J Mol Struct 995:130–133

    Article  Google Scholar 

  36. Pressprich MR, Bond MR, Willett RD (2002) J Phys Chem Solids B 63: 79–88

    Article  CAS  Google Scholar 

  37. Laus G, Kahlenber V, Schottenberger H (2015) Acta Cryst Sec E 71:m110–m111

    Article  CAS  Google Scholar 

  38. Reyes-Martinez R, Carballo RM, Rena-Rejón GJ, Hernández-Ortega S, Cárces-Castillo D (2014) Acta Cryst Sec E 70:m295

    Article  CAS  Google Scholar 

  39. Liu M-L (2011) Acta Cryst Sec E 67: m1827

    Article  CAS  Google Scholar 

  40. Kumar DK, Ballabh A, Jose DA, Dastidar P, Das A (2005) Cryst Growth Des 5:651–660

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Welch Foundation (AX-0026) and The University of Texas at San Antonio for support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith A. Walmsley.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Przyojski, J.A., Arman, H.D., Myers, N.N. et al. Synthesis and Characterization of Two New Mononuclear Complexes of Cobalt(II) with 7-Azaindole. J Chem Crystallogr 47, 22–29 (2017). https://doi.org/10.1007/s10870-017-0676-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-017-0676-0

Keywords

Navigation