Advertisement

Journal of Chemical Crystallography

, Volume 47, Issue 1–2, pp 22–29 | Cite as

Synthesis and Characterization of Two New Mononuclear Complexes of Cobalt(II) with 7-Azaindole

  • Jacob A. Przyojski
  • Hadi D. Arman
  • Nicole N. Myers
  • Judith A. Walmsley
Original Paper

Abstract

Two new complexes of cobalt(II) with 7-azaindole have been synthesized, and characterized by elemental analysis and FTIR spectroscopy, [(C2H5)3NH][Co(Haza)Cl3] 1, (where Haza = 7-azaindole), and [Co(Haza)2Cl2], 2. The crystal structures for 1 and 2 were determined by X-ray diffraction analysis. [(C2H5)3NH][Co(Haza)Cl3], 1, is monoclinic and crystallizes in the space group P2 1 /n with a = 12.9997 (2), b = 9.87449 (13), c = 13.9488 (2) Å, β = 104.0180 17)°. [Co(Haza)2Cl2], 2. is also monoclinic and crystallizes in the space group P2 1 /c with a = 12.453 (3), b = 9.3753 (18), c = 13.136 (3) Å, β = 98.728 (4). In both complexes the bonding to the Haza is via the pyridine N (N7), where the Haza is a neutral ligand, and the environment around the Co ions is distorted tetrahedral. Hydrogen bonding between the N1–H and Cl is present in 1 and 2, and determines the head to head alignment of the two Haza with respect to each other in 2. Additional hydrogen bonding links the cation and anion together in 1. FTIR confirms the presence of the neutral Haza in the both materials.

Graphical Abstract

Two complexes of the 7-azaindole ligand with Co(II) are reported. Hydrogen bonding in [(C2H5)3NH][Co(Haza)Cl3], including a bifurcated H-bond from N3–H to Cl2 and Cl3 is shown.

Keywords

Cobalt 7-Azaindole (1H-pyrrolol[2,3-b]pyridine) Mononuclear complexes X-ray structure Infrared spectra 

Notes

Acknowledgements

The authors thank the Welch Foundation (AX-0026) and The University of Texas at San Antonio for support of this research.

Supplementary material

10870_2017_676_MOESM1_ESM.pdf (184 kb)
Supplementary material 1 (PDF 183 KB)
10870_2017_676_MOESM2_ESM.pdf (129 kb)
Supplementary material 2 (PDF 128 KB)
10870_2017_676_MOESM3_ESM.pdf (123 kb)
Supplementary material 3 (PDF 123 KB)

References

  1. 1.
    Domínguez-Martín A, Brandi-Blanco M, Matilla-Hernandez A, El Bakkali H, Marina-Nurchi V, González-Pérez JM, Castiñeiras A, Niclós-Gutiérrez J (2013) Coord Chem Rev 257:2814–2838CrossRefGoogle Scholar
  2. 2.
    Przyojski JA, Kiewit ML, Fillman KL, Arman HD, Tonzetich ZJ (2015) Inorg Chem 54:9637–9645CrossRefGoogle Scholar
  3. 3.
    Zhao S-B, Wang S (2010) Chem Soc Rev 39:3142–3156CrossRefGoogle Scholar
  4. 4.
    Przyojski JA, Myers NN, Arman HD, Prosvirin A, Dunbar KR, Natarajan M, Krishnan M, Mohan S, Walmsley JA (2013) J Inorg Biochem 127:175–181CrossRefGoogle Scholar
  5. 5.
    Peng S-M, Lin Y-N (1986) Acta Cryst C 42:1725–1731CrossRefGoogle Scholar
  6. 6.
    Poitras J, Beauchamp AL (1992) Can J Chem 70: 2846–2855CrossRefGoogle Scholar
  7. 7.
    Balboa S, Borrás J, Brandi P, Carballo R, Castiñeiras A, Lago AB, Niclós-Gutiérrez J, Real JA (2011) Cryst Growth Des 11:4344–4352CrossRefGoogle Scholar
  8. 8.
    Kosaka W, Yamamoto N, Miyasaka H (2013) Inorg Chem 52:9908–9914CrossRefGoogle Scholar
  9. 9.
    Bland BRA, Gilfoy HJ, Vamvounis G, Robertson KN, Cameron TS, Aquino MAS (2005) Inorg Chim Acta 358:3927–3936CrossRefGoogle Scholar
  10. 10.
    Edema JJH, Gambarotta S, Meetsma A, van Bolhuis F, Spek AL, Smeets WJJ (1990) Inorg Chem 29:2147–2153CrossRefGoogle Scholar
  11. 11.
    Lee C-F, Chin K-F, Peng S-M, Che C-M (1993) J Chem Soc Dalton Trans 3:467–470CrossRefGoogle Scholar
  12. 12.
    Wu Q, Lavigne JA, Tao Y, D’Iorio M, Wang S (2000) Inorg Chem 39:5248–5254CrossRefGoogle Scholar
  13. 13.
    Sheldrick WS (1982) Z Naturforsch 37:653–656Google Scholar
  14. 14.
    Štarha P, Marek J, Trávníček Z (2012) Polyhedron 33:404–409CrossRefGoogle Scholar
  15. 15.
    Switlicka-Olszewska A, Machura B, Mrozinski J, Kalinska B, Kruszynski R, Penkala M (2014) New J Chem 38:1611–1626CrossRefGoogle Scholar
  16. 16.
    van Albada GA, Nur S, van der Horst MG, Mutikainen I, Turpeinen U, Reedijk J (2008) J Mol Struct 874:41–45CrossRefGoogle Scholar
  17. 17.
    Ruiz J, Rodriguez V, de Haro C, Espinosa A, Perez J, Janiak C (2010) Dalton Trans 39:3290–3301CrossRefGoogle Scholar
  18. 18.
    Ashenhurst J, Wu G, Wang S (2000) J Am Chem Soc 122:2541–2547CrossRefGoogle Scholar
  19. 19.
    van Albada GA, Tanase S, Mutikainen I, Turpeinen U, Reedijk J (2008) Inorg Chim Acta 361:1463–1468CrossRefGoogle Scholar
  20. 20.
    Chan C-K, Guo C-X, Cheung K-K, Li D, Che C-M (1994) J Chem Soc Dalton Trans 3677–3682. doi: 10.1039/dt9940003677 Google Scholar
  21. 21.
    Pogozhev D, Baudron SA, Hosseini MW (2011) Dalton Trans 40:7403–7411CrossRefGoogle Scholar
  22. 22.
    Kurmoo M (2009) Chem Soc Rev 38:1353–1379CrossRefGoogle Scholar
  23. 23.
    Kostakis GE, Perlepes SP, Blatov VA, Proserpio DM, Powell AK (2012) Coord Chem Rev 256:1246–1278CrossRefGoogle Scholar
  24. 24.
    Murrie M (2010) Chem Soc Rev 39:1986–1995CrossRefGoogle Scholar
  25. 25.
    Brookes RW, Martin RL (1975) Aust J Chem 28:1363–1366CrossRefGoogle Scholar
  26. 26.
    CrystalClear, User Manual, (2011) Rigaku/MSC Inc, Rigaku Corporation, The Woodlands TXGoogle Scholar
  27. 27.
    Higashi T (1995) ABSCOR Rigaku Corporation. TokyoGoogle Scholar
  28. 28.
    Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Crystallogr 42:339–341CrossRefGoogle Scholar
  29. 29.
    Sheldrick GM (2015) Acta Cryst A 71: 3–8CrossRefGoogle Scholar
  30. 30.
    Sheldrick GM (2008) Acta Cryst A 64, 112–122CrossRefGoogle Scholar
  31. 31.
    Allaire F, Beauchamp AL (1989) Inorg Chim Acta 156:241–249CrossRefGoogle Scholar
  32. 32.
    Karthikeyan B (2006) Spectrochim Acta A 64:1083–1087CrossRefGoogle Scholar
  33. 33.
    Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds Part A, 5th edn. Wiley, Hoboken p192Google Scholar
  34. 34.
    Spectral Database for Organic Compounds, SDBS, No. 3145Google Scholar
  35. 35.
    van Albada GA, Tanase S, Mutikainen I, Turpeinen U, Reedijk J (2011) J Mol Struct 995:130–133CrossRefGoogle Scholar
  36. 36.
    Pressprich MR, Bond MR, Willett RD (2002) J Phys Chem Solids B 63: 79–88CrossRefGoogle Scholar
  37. 37.
    Laus G, Kahlenber V, Schottenberger H (2015) Acta Cryst Sec E 71:m110–m111CrossRefGoogle Scholar
  38. 38.
    Reyes-Martinez R, Carballo RM, Rena-Rejón GJ, Hernández-Ortega S, Cárces-Castillo D (2014) Acta Cryst Sec E 70:m295CrossRefGoogle Scholar
  39. 39.
    Liu M-L (2011) Acta Cryst Sec E 67: m1827CrossRefGoogle Scholar
  40. 40.
    Kumar DK, Ballabh A, Jose DA, Dastidar P, Das A (2005) Cryst Growth Des 5:651–660CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Jacob A. Przyojski
    • 1
    • 2
  • Hadi D. Arman
    • 1
  • Nicole N. Myers
    • 1
  • Judith A. Walmsley
    • 1
  1. 1.Department of ChemistryThe University of Texas at San AntonioSan AntonioUSA
  2. 2.Department of ChemistryMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations