Advertisement

Journal of Chemical Crystallography

, Volume 47, Issue 1–2, pp 10–21 | Cite as

Synthesis, Crystal Structures, Density Functional Theory (DFT) Calculations and Molecular Orbital Calculations of Three New Derivatives of 1-(phenylsulfonyl)indole

  • Philip Z. Mannes
  • Manpreet Kaur
  • Evans O. Onyango
  • Gordon W. Gribble
  • Jerry P. Jasinski
Original Paper

Abstract

Three new derivatives of 1-(phenylsulfonyl)indole : 3-nitro-1-(phenylsulfonyl)-1H-indol-2-amine (I): C14H11N3O4S; N-(tert-butyl)-3-nitro-1-(phenylsulfonyl)-1H-indol-2-amine (II): C18H19N3O4S and tert-butyl 4-(phenylsulfonyl)-(1; Pelkey, Gribble, Tetrahedron Lett 38:5603–5606, 1997; 3)triazolo[4,5-b]indole-1(4H)-carboxylate (III): C19H18N4O4S, have been synthesized and their structures determined by single crystal X-ray crystallography. (I), C14H11N3O4S, is triclinic with space group P-1 and cell constants:a = 7.7394(8) Å, b = 12.5826(11) Å, c = 14.7280(13) Å, α = 77.259(8)°, β = 75.885(8)°, γ = 79.342(8)°, V = 1343.6(2) Å3, Z = 4. (II), C18H19N3O4S, is monoclinic with space group P21/c and cell constants:a = 16.0499(5) Å, b = 12.0196(4) Å, c = 9.7866(4) Å, β = 104.879(4)°, V = 1824.67(12) Å3, Z = 4. (III), C19H18N4O4S, is triclinic with space group P-1 and cell constants: a = 9.0391(8) Å, b = 10.3429(12) Å, c = 10.8145(11) Å, α = 75.870(9)°, β = 71.489(9)°, γ = 88.111(8)°, V = 928.64(17) Å3, Z = 2. All three compounds have the same indole nitrogen phenylsulfonyl substituent. In the crystals, the dihedral angle between the mean planes of the pyrrolyl groups of the indole ring and phenylsulfonyl groups are 86.0(8)o (IA) or 83.5(4)o (IB), and 85.0(6)o (III), forming an L-shaped molecule, while in (II) it is 52.9(5)o, forming a V-shaped molecule due in part to the puckering of the pyrrolyl ring from the nonplanar indole group. Additionally, the DFT frontier molecular orbitals of each compound are displayed and correlation between the calculated molecular orbital energies (eV) for the surfaces of the frontier molecular orbitals to the electronic excitation transitions from the absorption spectra of each compound have been proposed.

Graphical Abstract

Synthesis, Crystal Structures, Density Functional Theory (DFT) Calculations and Molecular Orbital Calculations of three new derivatives of 1-(phenylsulfonyl)indole: 3-nitro-1-(phenylsulfonyl)-1H-indol-2-amine (I): C14H11N¬3O4S; N-(tert-butyl)-3-nitro-1-(phenylsulfonyl)-1H-indol-2-amine (II): C18H19N3O4S and tert-butyl 4-(phenylsulfonyl)-[1,2,3]triazolo[4,5-b]indole-1(4H)-carboxylate (III): C19H18N4O4S.

Keywords

Crystal structure Indole Phenylsulfonyl Triazoloindole Nitro Density functional theory (DFT) 

Notes

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No.CHE-1039027) for funds to purchase the X-ray diffractometer. GWG acknowledges support from the donors of the Petroleum Research Fund administered by the American Chemical Society.

Supplementary material

10870_2016_675_MOESM1_ESM.pdf (147 kb)
Supplementary material 1 (PDF 146 KB)
10870_2016_675_MOESM2_ESM.pdf (139 kb)
Supplementary material 2 (PDF 139 KB)
10870_2016_675_MOESM3_ESM.pdf (121 kb)
Supplementary material 3 (PDF 120 KB)

References

  1. 1.
    Gribble GW et al (2005) Curr Org Chem 9:1493–1519Google Scholar
  2. 2.
    Pelkey ET, Gribble GW (1997) Tetrahedron Lett 38:5603–5606CrossRefGoogle Scholar
  3. 3.
    Pelkey ET, Gribble GW (1999) Synthesis 1117–1122Google Scholar
  4. 4.
    Jiang J, Gribble GW (2002) Tetrahedron Lett 43:4115–4117CrossRefGoogle Scholar
  5. 5.
    Roy S, Gribble GW (2005) Tetrahedron Lett 46:1325–1328CrossRefGoogle Scholar
  6. 6.
    Pelkey ET, Gribble GW (1997) Chem Commun 1873–1874Google Scholar
  7. 7.
    Pelkey ET, Barden TC, Gribble GW (1999) Tetrahedron Lett 40:7615–7619CrossRefGoogle Scholar
  8. 8.
    Gribble GW, Pelkey ET, Simon WM, Trujillo HA (2000) Tetrahedron 56:10133–10140CrossRefGoogle Scholar
  9. 9.
    Kishbaugh TLS, Gribble GW (2001) Tetrahedron Lett 42:4783–4785CrossRefGoogle Scholar
  10. 10.
    Roy S, Gribble GW (2006) Heterocycles 70:51–56CrossRefGoogle Scholar
  11. 11.
    Roy S, Kishbaugh TLS, Jasinski JP, Gribble GW (2007) Tetrahedron Lett 48:1313–1316CrossRefGoogle Scholar
  12. 12.
    Roy S, Gribble GW (2007) Tetrahedron Lett 48:1003–1005CrossRefGoogle Scholar
  13. 13.
    Androsov DA, Kishbaugh TLS, Gribble GW (2008) Tetrahedron Lett 49:6621–6623CrossRefGoogle Scholar
  14. 14.
    Roy S, Roy S, Gribble GW (2008) Tetrahedron Lett 49:1531–1533CrossRefGoogle Scholar
  15. 15.
    Alford PE, Kishbaugh TLS, Gribble GW (2010) Heterocycles 80:831–840CrossRefGoogle Scholar
  16. 16.
    Rigaku Oxford Diffraction (2014) CrysAlis PRO and CrysAlis RED. The Woodlands, TXGoogle Scholar
  17. 17.
    Sheldrick, GM (2015) Acta Cryst C71, 3–8Google Scholar
  18. 18.
    Johnson CK (1976) ORTEP II. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, TennesseeGoogle Scholar
  19. 19.
    Allen FH, Kennard O, Watson DG, Brammer L, Orpen A, Taylor RJ (1987) Chem Soc Perkin Trans 2:S1–S19CrossRefGoogle Scholar
  20. 20.
    Schmidt JR, Polik WF (2007) WebMO Pro, version 8.0.01e; WebMO, LLc: Holland. http://www.webmo.net
  21. 21.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, Gaussian Inc., Wallingford CT, Gaussian 09, Revision D.01, (2009)Google Scholar
  22. 22.
    Becke AD (1998) Phys Rev A38:3098Google Scholar
  23. 23.
    Lee C, Yang W, Parr RG (1988) Phys Rev B37:785CrossRefGoogle Scholar
  24. 24.
    Hehre WJ, Random L, Schleyer PR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New YorkGoogle Scholar
  25. 25.
    Georgakopoulous S, Grondelle RV, Zwan GVD (2004) J Biophys 87:3010–3022CrossRefGoogle Scholar
  26. 26.
    Guzin A (2002) Turk J Chem 26:295–302Google Scholar
  27. 27.
    IGOR Pro (1988–2009) WaveMetrics, P.O. Box 2088, Lake Oswego, Oregon, 97035. USAGoogle Scholar
  28. 28.
    Beddoes RL, Alton L, Joule JA, Mills OS, Street JD, Watt CF (1986) J Chem Soc Perkin Trans 2:786–797Google Scholar
  29. 29.
    Cremer D, Pople JA (1975) J Am Chem Soc 97:1354–1358CrossRefGoogle Scholar
  30. 30.
    Sonar VN, Parkin S, Crooks PA (2004) Acta Cryst C60:o659–o651Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Philip Z. Mannes
    • 1
  • Manpreet Kaur
    • 2
  • Evans O. Onyango
    • 1
  • Gordon W. Gribble
    • 1
  • Jerry P. Jasinski
    • 2
  1. 1.Department of ChemistryDartmouth CollegeHanoverUSA
  2. 2.Department of ChemistryKeene State CollegeKeeneUSA

Personalised recommendations