Advertisement

Journal of Chemical Crystallography

, Volume 47, Issue 1–2, pp 1–9 | Cite as

Four New Coordination Polymers Constructed by 2-(4-Thiazolyl)benzimidazole and 1,3,5-Benzenetricarboxylic Acid

Original Paper

Abstract

Through using mixed N/S-containing ligand 2-(4-thiazolyl)benzimidazole (L), four new metal–organic coordination polymers, namely, [Co2 L 4(HBTC)(H2O)2] (1), [Cu2 L 2(HBTC)2]·H2O (2), [NiL 3]·(HBTC)·H2O (3) and [NiL 3]·H2O (4), have been synthesized under hydrothermal conditions, further assisted by a second organic ligand, benzenetricarboxylic (H3BTC). The structures of 14 have been determined by single crystal X-ray diffraction analyses and further characterized by elemental analyses and IR spectra. Compound 1 contains two {CoL 2(H2O)} fragments, which are connected by a BTC molecule to form a discrete “V”-type subunit. The hydrogen bonding interactions between N3⋯O1 atoms induce a 1D chain of 1. Complex 2 includes bi-nuclear CuII subunits, which are linked by BTC ligands to form a 2D layer. Each bi-nuclear Cu subunit is linked by four BTC molecules. Both complexes 3 and 4 are based on [NiL 3] subunits. In complex 3, when NiCl2·6H2O was used as reactant, a discrete BTC molecule is captured as a counter anion. In contrast, when using reactant NiSO4·6H2O, [NiL 3]·H2O (4) is formed. Both complexes 3 and 4 contain abundant hydrogen bonding interactions. In these complexes, the N donors in L ligand coordinate with transition metals and the S atoms participate in hydrogen bonding interactions.

Graphical Abstract

Through using mixed N/S-containing ligand 2-(4-thiazolyl)benzimidazole (L), four new metal-organic coordination polymers, namely, [Co2 L 4(HBTC)(H2O)2] (1), [CuL(HBTC)] (2), [NiL 3]·(HBTC)·H2O (3) and [Ni(L)3]·H2O (4), have been synthesized under hydrothermal conditions further assisted by the second organic ligand benzentricaboxylate (H3BTC).

Keywords

Coordination polymers 2-(4-thiazolyl)benzimidazole Benzentricarboxylate 

Notes

Acknowledgement

Financial supports of this research by the National Natural Science Foundation of China (Nos. 21571023, 21471021 and 21401010) and Program of Innovative Research Team in University of Liaoning Province (LT2012020).

References

  1. 1.
    Kasai K, Aoyagi M, Fujita M (2000) J Am Chem Soc 122:2140–2141CrossRefGoogle Scholar
  2. 2.
    Livage C, Forster PM, Guillou N, Tafoya MM, Cheetham AK, Férey G (2007) Angew Chem Int Ed 46:5877–5879CrossRefGoogle Scholar
  3. 3.
    Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Nature 423:705–714CrossRefGoogle Scholar
  4. 4.
    Kitagawa S, Kitaura R, Noro S (2004) Angew Chem Int Ed 43:2334–2375CrossRefGoogle Scholar
  5. 5.
    Zhang J, Chen SM, Wu T, Feng PY, Bu XH (2008) J Am Chem Soc 130:12882–12883CrossRefGoogle Scholar
  6. 6.
    Train C, Nuida T, Gheorghe R, Gruselle M, Ohkoshi S (2009) J Am Chem Soc 131:16838–16843CrossRefGoogle Scholar
  7. 7.
    Li CP, Yu Q, Chen J, Du M (2010) Cryst Growth Des 10:2650–2660CrossRefGoogle Scholar
  8. 8.
    Fang HC, Zhu JQ, Zhou LJ, Jia HY, Li SS, Gong X, Li SB, Cai YP, Thallapally PK, Liu J, Exarhos GJ (2010) Cryst Growth Des 10:3277–3284CrossRefGoogle Scholar
  9. 9.
    Liu FJ, Sun D, Hao HJ, Huang RB, Zheng LS (2012) CrystEngComm 14:377–379Google Scholar
  10. 10.
    Sun HX, Xie WL, Lv SH, Xu Y, Wu Y, Zhou YM, Ma ZM, Fang M, Liu HK (2012) Dalton Trans 41:7590–7594CrossRefGoogle Scholar
  11. 11.
    Dilip KM, Arijit H, Saheli G, Debajyoti G (2016) Cryst Growth Des. doi: 10.1021/acs.cgd.6b00946 Google Scholar
  12. 12.
    Chen ZL, Hu ZB, Li YS, Liang YN, Wang XY, Li OY, Zhao Q, Cheng HY, Liang FP (2016) Dalton Trans. doi: 10.1039/c6dt03207a Google Scholar
  13. 13.
    Suresh D, Bruno F, Patrícia SL, Clara SBG, Paramasivam K, Ana C, Diogo VV, Jorge M, Maria JC, António LM, Pedro TG (2016) Dalton Trans. doi: 10.1039/C6DT02771G Google Scholar
  14. 14.
    Liu GZ, Wang JG, Wang LY (2012) CrystEngComm 14:951–960CrossRefGoogle Scholar
  15. 15.
    Jassal AK, Sharma S, Hundal G, Hundal MS (2015) Cryst Growth Des 15:79–93CrossRefGoogle Scholar
  16. 16.
    Li ZX, Xu Y, Zuo Y, Li L, Pan QH, Hu TL, Bu XH (2009) Cryst Growth Des 9:3904–3909CrossRefGoogle Scholar
  17. 17.
    Tian AX, Yang Y, Sun N, Ying J, Wang XL (2014) J Coord Chem 67:1550–1561CrossRefGoogle Scholar
  18. 18.
    Lu QL, Luan J, Wang XL, Lin HY, Xu C (2012) Transit Metal Chem 37:713–719CrossRefGoogle Scholar
  19. 19.
    Sheldrick GM (2008) Acta Crystallogr Sect A 64:112–122CrossRefGoogle Scholar
  20. 20.
    Wang XL, Sha XT, Liu GC, Chen NL, Tian Y (2015) CrystEngComm 17:7290–7299CrossRefGoogle Scholar
  21. 21.
    Zhang WL, Liu YY, Ma JF, Jiang H, Yang J, Ping GJ (2008) Cryst Growth Des 8:1250–1256CrossRefGoogle Scholar
  22. 22.
    Yu Q, Zhang XQ, Bian HD, Liang H, Zhao B, Yan SP, Liao DZ (2008) Cryst Growth Des 8:1140–1146CrossRefGoogle Scholar
  23. 23.
    Wu XM, Liu GC, Wang XL, Shao JY, Lin HY, Wang X (2016) Chem Res Chin Univ 32:719–724CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of ChemistryBohai UniversityJinzhouPeople’s Republic of China
  2. 2.Department of Chemical and Environmental EngineeringHebei Chemical & Pharmaceutical Vocational Technology CollegeShijiazhuangPeople’s Republic of China

Personalised recommendations