Journal of Chemical Crystallography

, Volume 46, Issue 10–12, pp 421–428 | Cite as

Synthesis and Crystal Structures of the Nickel(II) and [Tri(n-butyl)]tin(IV) Complexes with the New Sulfonamide Carboxylic Acid, 4-{(2-Nitrophenylsulfonamido)methyl}cyclohexanecarboxylic Acid

Original Paper


The structures of the nickel(II) and [tri(n-butyl)]tin(IV) complexes with the sulfonamide carboxylic acid, 4-{(2-nitrophenylsulfonamido)methyl}cyclohexanecarboxylic acid, [Ni(C14H17N2O6S)2(H2O)4], (1), and [Sn(C4H9)3(C14H17N2O6S)]n, (2) have been determined. Crystals of 1 are triclinic, space group P−1, with unit cell dimensions a = 5.2264(4), b = 6.2415(2), c = 27.1409(16) Å, α = 85.682(4), β = 89.935(4), γ = 82.861(5)o and Z = 1, while compound 2 is monoclinic, space group C2/c, with unit cell dimensions a = 30.425(3), b = 10.1384(5), c = 19.4463(13) Å, β = 92.303(7)o and Z = 8. Compound 1 is a discrete centrosymmetric octahedral NiO6 complex comprising four waters and two O-donors from inversion-related monodentate carboxylate ligands. Compound 2 is coordination polymeric with the five-coordinate SnIV centre having the common trigonal bipyramidal repeat unit with three tri(n-butyl) groups occupying the trigonal plane of the bipyramid and the carboxylate O-donors bridging the apical sites.

Graphical Abstract


NiII and SnIV complexes Sulfonamide carboxylates Hydrogen-bonding 



We are thankful to Higher Education Commission (HEC) of Pakistan for funding this work under the Project No. 20-2549/NRPU/R&D/HEC/12. GS acknowledges support from the Science and Engineering Faculty, Queensland University of Technology, Brisbane, Australia.

Supplementary material

10870_2016_671_MOESM1_ESM.docx (57 kb)
Supplementary material 1 (DOCX 57 kb)


  1. 1.
    McCormack PL (2012) Drugs 72:585–617CrossRefGoogle Scholar
  2. 2.
    Wellington K, Wagstaff AJ (2003) Drugs 63:1417–1433CrossRefGoogle Scholar
  3. 3.
    Patel NK (2012) Int J Basic Clin Pharmacol 1:85–90CrossRefGoogle Scholar
  4. 4.
    Pereira J, Phan T (2004) Oncologist 9:561–570CrossRefGoogle Scholar
  5. 5.
    Casati V, Gerli C, Franco A, Torri G, Angelo AD, Benussi S, Alfieri O (2001) Ann Thorac Surg 72:470–475CrossRefGoogle Scholar
  6. 6.
    Qadir MA, Ahmed M, Iqbal M (2015) BioMed Res Int: In Press: http:\ Scholar
  7. 7.
    Shahzadi S, Ali S, Parvez M, Badshah A, Ahmed E, Malik A (2007) Russ J Inorg Chem 52:386–393CrossRefGoogle Scholar
  8. 8.
    Shah FA, Ali S, Shahzadi S (2010) J Iran Chem Soc 7:59–68CrossRefGoogle Scholar
  9. 9.
    Ashfaq M, Arshad MN, Danish M, Asiri AM, Khatoon S, Mustafa G, Zolotarev PN, Butt RA, Sahin O (2016) J Mol Struct 1103:271–280Google Scholar
  10. 10.
    Danish M, Tahir MN, Hussain A, Ashfaq M, Sadiq MN (2015) Acta Crystallogr E 71:o145CrossRefGoogle Scholar
  11. 11.
    Ashfaq M, Iram S, Akkurt M, Khan IU, Mustafa G, Sharif S (2011) Acta Crystallogr E 67:o1563CrossRefGoogle Scholar
  12. 12.
    Ashfaq M, Iram S, Akkurt M, Khan IU, Mustafa G, Danish M (2011) Acta Crystallogr E 67:o2248–o2249CrossRefGoogle Scholar
  13. 13.
    Vullo D, De Luca V, Scozzafava A, Carginale V, Rossi M, Supuran CT, Capasso C (2013) Bioorg Med Chem 21:4521–4525CrossRefGoogle Scholar
  14. 14.
    Zahid HC (2009) Transition Met Chem 34:153–161CrossRefGoogle Scholar
  15. 15.
    Ali ESH, Nassar FI, Badawi AM, Afify SA (2010) Int J Gen Mol Biol 2:78–91Google Scholar
  16. 16.
    Saeedi M, Golia F, Mahdavia M, Dehghan G, Faramarzi MA, Foroumadi A, Shafiee A (2014) Iran J Pharm Res 13:881–892Google Scholar
  17. 17.
    Kołaczek A, Fusiarz I, Ławecka J, Branowska D (2014) Chemik 68:620–628Google Scholar
  18. 18.
    Villa-Pérez C, Cadavid-Vargas JF, Camí GE, Giannini F, Villalba MEC, Echeverria G, Ortega IC, Valencia-Uribe GC, Etcheverry SB, Soria DB (2016) Inorg Chim Acta 447:127–133CrossRefGoogle Scholar
  19. 19.
    Camí G, Villalba EC, Santi YD, Colinas P, Estiu G, Soria DB (2011) J Mol Struct 995:72–77CrossRefGoogle Scholar
  20. 20.
    Estiu G, Villalba MEC, Camí GE, Echeverria GA, Soria DB (2014) J Mol Struct 1062:82–88CrossRefGoogle Scholar
  21. 21.
    Camí GE, Villalba MEC, Colinas P, Echeverria GA, Estiu G, Soria DB (2012) J Mol Struct 1024:110–116CrossRefGoogle Scholar
  22. 22.
    Rigaku OD (2015) CrysAlis PRO. Rigaku Technologies, YarntonGoogle Scholar
  23. 23.
    Altomare A, Cascarano G, Giacovazzo A, Guagliardi A (1993) J Appl Crystallogr 26:343–350CrossRefGoogle Scholar
  24. 24.
    Sheldrick GM (2008) Acta Crystallogr A 64:112–122CrossRefGoogle Scholar
  25. 25.
    Farrugia LJ (2012) J Appl Crystallogr 45:849–854CrossRefGoogle Scholar
  26. 26.
    Spek AL (2009) Acta Crystallogr D 65:148–152CrossRefGoogle Scholar
  27. 27.
    Pavkovic SF, Wilholm FC, Brown JN (1978) Acta Crystallogr 34:1337–1340CrossRefGoogle Scholar
  28. 28.
    Wolodkiewicz W, Glowiak T (1998) Pol J Chem 72:1249–1254Google Scholar
  29. 29.
    Wang H-Y, Gao S, Ng SW (2005) Acta Crystallogr E 61:m2639–m2640CrossRefGoogle Scholar
  30. 30.
    Kuang D-Z, Yu J-X, Yin D-L, Feng Y-L, Zhang F-X, Wang J-Q, Liu M-Q (2010) Wuji. Huaxue Xuebao 26:2303–2306Google Scholar
  31. 31.
    Ma C, Wang Y, Zhang R (2009) Inorg Chim Acta 362:4137–4144CrossRefGoogle Scholar
  32. 32.
    ur-Rehman S, Ali S, Badshak A, Malik A, Ahmid E, Jin G-X, Tiekink ERT (2004) Appl Organometal Chem 18:401–408Google Scholar
  33. 33.
    Bernstein J, Davis RE, Shimoni L, Chang N-L (1995) Angew Chem Int Ed Eng 34:1555–1573CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of GujratGujratPakistan
  2. 2.Science and Engineering FacultyQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations