Advertisement

Journal of Chemical Crystallography

, Volume 46, Issue 4, pp 170–180 | Cite as

Crystal Structures and Hirshfeld Surface Analyses of 6-Substituted Chromones

  • Sahan R. Salpage
  • Mark D. Smith
  • Linda S. Shimizu
Original Paper

Abstract

Here, we compare structures determined by X-ray diffraction and subsequent Hirshfeld surface analysis to identify and understand the non-covalent interactions within the lattices of chromone, 6-methylchromone, 6-methoxychromone, 6-fluorochromone, and 6-chlorochromone with reported 6-bromochromone. In chromone, H-bonds and CH–л interactions predominate. H-bonds and aryl-stacking interactions are distinct in 6-methylchromone and 6-methoxychromone. The 6-fluorochromone, showed two types of H-bonds with O···H bonds having a greater contribution than F···H. In contrast, 6-chlorochromone and 6-bromochromone, the halogen contributes the larger percentage of stabilizing H-bonding with Cl···H and Br···H predominating over the O···H bonds. Compound 1 crystallizes in the monoclinic space group P21 /n with a = 8.1546(8) Å, b = 7.8364(7) Å, c = 11.1424(11) Å, β = 108.506(2)° and Z = 4. Compound 2 crystallizes in the triclinic space group P-1 with a = 7.0461(3) Å, b = 10.2108(5) Å, c = 10.7083(5) Å, α = 89.884(2)°, β = 77.679(2)°, γ = 87.367(2)° and Z = 4. Compound 3 crystallizes in the monoclinic space group P21/n with a = 8.1923(4) Å, b = 7.0431(3) Å, c = 15.3943(8) Å, β = 92.819(2)° and Z = 4. Compound 4 crystallizes in the triclinic space group P1 with a = 3.7059(2) Å, b = 6.1265(4) Å, c = 7.6161(5) Å, α = 84.085(3)°, β = 87.070(3)°, γ = 83.390(3)° and Z = 1. Compound 5 crystallizes in the monoclinic space group P2 1 with a = 3.8220(2) Å, b = 5.6985(2) Å, c = 16.9107(7) Å, β = 95.8256(18)° and Z = 2.

Graphical Abstract

The effect of substituents at the 6-position on chromone on their crystal structures using Hirshfeld surface and fingerprint analysis.

Keywords

Chromones Single crystals Non-covalent interactions Hirshfeld surface analysis Fingerprint plots 

Notes

Acknowledgments

This research was supported by the National Science Foundation CHE-1305136.

References

  1. 1.
    Desiraju GR (2013) J Am Chem Soc 135(27):9952–9967CrossRefGoogle Scholar
  2. 2.
    Tiekink ERT (2012) Crystal engineering. Supramolecular chemistry. Wiley, New YorkGoogle Scholar
  3. 3.
    Aakeroy CB, Champness NR, Janiak C (2010) CrystEngComm 12(1):22–43CrossRefGoogle Scholar
  4. 4.
    Desiraju GR (2007) Angew Chem Int Ed 46(44):8342–8356CrossRefGoogle Scholar
  5. 5.
    Braga D, Brammer L, Champness NR (2005) CrystEngComm 7(1):1–19CrossRefGoogle Scholar
  6. 6.
    Hollingsworth MD (2002) Science 295(5564):2410–2413Google Scholar
  7. 7.
    Braga D, Desiraju GR, Miller JS, Orpen AG, Price SL (2002) CrystEngComm 4(83):500–509CrossRefGoogle Scholar
  8. 8.
    Stadler A-M, Lehn J-MP (2014) J Am Chem Soc 136(9):3400–3409CrossRefGoogle Scholar
  9. 9.
    Dolain C, Maurizot V, Huc I (2003) Angew Chem Int Ed 42(24):2738–2740CrossRefGoogle Scholar
  10. 10.
    Kay ER, Leigh DA, Zerbetto F (2007) Angew Chem Int Ed 46(1–2):72–191Google Scholar
  11. 11.
    Lehn JM (2006) Molecular and supramolecular devices. Supramolecular chemistry. Wiley, New York, pp 89–138CrossRefGoogle Scholar
  12. 12.
    Tian J, Thallapally PK, McGrail BP (2012) Gas storage and separation in supramolecular materials. Supramolecular chemistry. Wiley, New YorkGoogle Scholar
  13. 13.
    Makal TA, Li J-R, Lu W, Zhou H-C (2012) Chem Soc Rev 41(23):7761–7779CrossRefGoogle Scholar
  14. 14.
    Liu J, Chen L, Cui H, Zhang J, Zhang L, Su C-Y (2014) Chem Soc Rev 43(16):6011–6061CrossRefGoogle Scholar
  15. 15.
    Wu C-D (2011) Crystal engineering of metal-organic frameworks for heterogeneous catalysis. Selective nanocatalysts and nanoscience. Wiley, New York, pp 271–298CrossRefGoogle Scholar
  16. 16.
    Aakeröy CB, Beatty AM (2001) Aust J Chem 54(7):409–421CrossRefGoogle Scholar
  17. 17.
    Desiraju GR (1989) Crystal engineering: the design of organic solids, vol 54. Elsevier, AmsterdamGoogle Scholar
  18. 18.
    Verpoorte R, Memelink J (2002) Curr Opin Biotechnol 13(2):181–187CrossRefGoogle Scholar
  19. 19.
    Keri RS, Budagumpi S, Pai RK, Balakrishna RG (2014) Eur J Med Chem 78:340–374CrossRefGoogle Scholar
  20. 20.
    Gaspar A, Matos MJ, Garrido J, Uriarte E, Borges F (2014) Chem Rev 114(9):4960–4992CrossRefGoogle Scholar
  21. 21.
    Ishar MPS, Singh G, Singh S, Sreenivasan KK, Singh G (2006) Bioorg Med Chem Lett 16(5):1366–1370CrossRefGoogle Scholar
  22. 22.
    Sakamoto M, Yagishita F, Kanehiro M, Kasashima Y, Mino T, Fujita T (2010) Org Lett 12(20):4435–4437CrossRefGoogle Scholar
  23. 23.
    Sakamoto M, Kanehiro M, Mino T, Fujita T (2009) Chem Commun 17:2379–2380CrossRefGoogle Scholar
  24. 24.
    Hanifin JW, Cohen E (1969) J Am Chem Soc 91(16):4494–4499CrossRefGoogle Scholar
  25. 25.
    Hanifin JW, Cohen E (1966) Tetrahedron Lett 7(44):5421–5426CrossRefGoogle Scholar
  26. 26.
    Salpage SR, Donevant LS, Smith MD, Bick A, Shimizu LS (2016) J Photochem Photobiol A 315:14–24CrossRefGoogle Scholar
  27. 27.
    Schmidt GMJ (1971) Pure Appl Chem 27:647–678CrossRefGoogle Scholar
  28. 28.
    Cohen MD, Schmidt GMJ, Sonntag FI (1964) J Chem Soc 384:2000–2013CrossRefGoogle Scholar
  29. 29.
    Cohen MD, Schmidt GMJ (1964) J Chem Soc 383:1996–2000CrossRefGoogle Scholar
  30. 30.
    Spackman MA, McKinnon JJ, Jayatilaka D (2008) CrystEngComm 10(4):377–388Google Scholar
  31. 31.
    Parkin A, Barr G, Dong W, Gilmore CJ, Jayatilaka D, McKinnon JJ, Spackman MA, Wilson CC (2007) CrystEngComm 9(8):648–652CrossRefGoogle Scholar
  32. 32.
    McKinnon JJ, Jayatilaka D, Spackman MA (2007) Chem Commun 37:3814–3816CrossRefGoogle Scholar
  33. 33.
    Spackman MA, McKinnon JJ (2002) CrystEngComm 4(66):378–392CrossRefGoogle Scholar
  34. 34.
    McKinnon JJ, Mitchell AS, Spackman MA (1998) Chem Eur J 4(11):2136–2141CrossRefGoogle Scholar
  35. 35.
    Spackman MA, Jayatilaka D (2009) CrystEngComm 11(1):19–32CrossRefGoogle Scholar
  36. 36.
    Staples RJ, Lea W (2005) New Cryst Struct 220(3):371–372Google Scholar
  37. 37.
    SMART Version 5.631, SAINT+ Version 6.45a (2003) Bruker Analytical X-ray Systems, Inc., MadisonGoogle Scholar
  38. 38.
    Sheldrick G (2008) Acta Crystallogr Sect A 64(1):112–122CrossRefGoogle Scholar
  39. 39.
    Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Crystallogr 42(2):339–341CrossRefGoogle Scholar
  40. 40.
    McKinnon JJ, Spackman MA, Mitchell AS (2004) Acta Crystallogr Sec t B 60(6):627–668CrossRefGoogle Scholar
  41. 41.
    Wells PR (2007) Group electronegativities. Progress in physical organic chemistry. Wiley, New York, pp 111–145Google Scholar
  42. 42.
    Seth SK, Sarkar D, Kar T (2011) CrystEngComm 13(14):4528–4535CrossRefGoogle Scholar
  43. 43.
    Batsanov AS, Howard JAK, Albesa-Jové D, Collings JC, Liu Z, Mkhalid IAI, Thibault M-H, Marder TB (2012) Cryst Growth Des 12(6):2794–2802CrossRefGoogle Scholar
  44. 44.
    Ling I, Alias Y, Sobolev AN, Raston CL (2010) CrystEngComm 12(12):4321–4327CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sahan R. Salpage
    • 1
  • Mark D. Smith
    • 1
  • Linda S. Shimizu
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of South CarolinaColumbiaUSA

Personalised recommendations