Advertisement

Journal of Chemical Crystallography

, Volume 46, Issue 2, pp 93–104 | Cite as

Synthesis, Crystal Structures and DFT Calculations of Two New Phenol-Based Ester Derivatives

  • Javeed A. Ganaie
  • Jubin Kumar
  • Ray J. Butcher
  • Jerry P. Jasinski
  • Sushil K. Gupta
Original Paper

Abstract

Two new phenol-based ester derivatives, namely C13H9ClO2 (I) and C20H14O4 (II) have been synthesized and characterized by NMR spectroscopy, single crystal X-ray diffraction and density functional theory (DFT) geometry optimization and molecular orbital calculations. Compound I crystallizes in the orthorhombic space group Pca2(1),with a = 7.6297 (5) Å, b = 5.5875 (3) Å, c = 26.1624 (12) Å, α = β = γ = 90°, V = 1115.33(11) Å3 and Z = 4. Compound II crystallizes in the triclinic space group P \(\bar 1\), with a = 5.7970 (4) Å, b = 8.1366 (8) Å, c = 8.8057 (9) Å, α = 83.246 (8)°, β = 72.138 (8)°, γ = 76.696 (8)°, V = 384.22 (6) Å3 and Z = 1. Geometry optimization calculations for each compound is consistent with these observations. A comparison of the dihedral angles between mean planes of the benzene rings in the crystal with the DFT theoretical calculations and weak intermolecular hydrogen bond interactions has been included for each molecule. Electronic transitions have been predicted by DFT Molecular Orbital calculations and compared with experimental absorption spectra.

Graphical Abstract

Synthesis, crystal structures, DFT geometry optimization and molecular orbital surface calculations of two new phenol-based ester derivatives of 4-chlorophenyl benzoate, (I): C13H9ClO2 and 1,4-phenylene dibenzoate, (II): C20H14O4.

Keywords

Phenol-based ester derivatives Crystal structure DFT geometry optimization calculations Frontier molecular orbitals 

Notes

Acknowledgments

SKG thanks UGC (University Grants Commission, New Delhi) for financial assistance [Grant No. F.37-500/2009 (SR)]. JPJ acknowledges the NSF–MRI (Grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

  1. 1.
    Huang W, Pei J, Chen B, Pei W, Ye X (1996) Tetrahedron 52:10131–10136CrossRefGoogle Scholar
  2. 2.
    Gandhi SS, Bell KL, Gibson MS (1995) Tetrahedron 51:13301–13308CrossRefGoogle Scholar
  3. 3.
    Rather JB, Reid EE (1919) J Am Chem Soc 41:75–83CrossRefGoogle Scholar
  4. 4.
    Literak J, Dostalova A, Klan P (2006) J Org Chem 71:713–723CrossRefGoogle Scholar
  5. 5.
    Palaska E, Sahin G, Kelicen P, Durlu NT, Altinok G (2002) II Farmaco 57:101–107CrossRefGoogle Scholar
  6. 6.
    Wiesner J, Kettler K, Jomaa H, Schlitzer M (2002) Bioorg Med Chem Lett 12:543–545CrossRefGoogle Scholar
  7. 7.
    Hsieh HP, Liou JP, Lin YT, Mahindroo N, Chang JY, Yang YN, Chern SS, Tan UK, Chang CW, Chen TW, Lin CH, Chang YY, Wang CC (2003) Bioorg Med Chem Lett 13:101–105CrossRefGoogle Scholar
  8. 8.
    Belluti F, Bartolini M, Bottegoni G, Bisi A, Cavalli A, Andrisano V, Rampa A (2011) Eur J Med Chem 46:1682–1693CrossRefGoogle Scholar
  9. 9.
    Wyatt PG, Bethell RC, Cammack N, Charon D, Dodic N, Dumaitre B, Evans DN, Green DVS, Hopewell PL, Humber DC, Lamont RB, Orr DC, Plested SJ, Ryan DM, Sollis SL, Storer R, Weingarten GG (1995) J Med Chem 38:1657–1667CrossRefGoogle Scholar
  10. 10.
    Fenton H, Tidmash IS, Ward MD (2010) Dalton Trans 39:3805–3815CrossRefGoogle Scholar
  11. 11.
    Vigato PA, Tamburini S, Bartolo L (2007) Coord Chem Rev 251:1311–1492CrossRefGoogle Scholar
  12. 12.
    Gupta SK, Hitchock PB, Argal GS (2008) Inorg Chim Acta 361:2139–2146CrossRefGoogle Scholar
  13. 13.
    Gupta SK, Hitchock PB, Kushwah YS, Argal GS (2007) Inorg Chim Acta 360:2147–2152Google Scholar
  14. 14.
    Adams JM, Morsi SE (1976) Acta Cryst B32:1345–1347CrossRefGoogle Scholar
  15. 15.
    Gowda BT, Foro S, Babitha KS, Fuess H (2008) Acta Cryst E64:o844Google Scholar
  16. 16.
    Moreno-Fuquen R, Rendon M, Kennedy AR (2014) Acta Cryst E70:o194Google Scholar
  17. 17.
    Gowda BT, Tokarcik M, Kozisek J, Babitha KS, Fuess H (2008) Acta Cryst E64:o1280Google Scholar
  18. 18.
    Mahendra M, Doreswamy DH, Sridhar MA, Prasad JS, Khanum SA, Shashikanth S, Venu TD (2005) J Chem Cryst 35:463–467CrossRefGoogle Scholar
  19. 19.
    Begum B, Al-Ghorbani M, Sharma S, Gupta VK, Khanum SA (2013) Acta Cryst E69:o999–o1000Google Scholar
  20. 20.
    Fun H, Shahani T, Garudachari B, Isloor AM, Satyganarayan MN (2011) Acta Cryst E67:o1802Google Scholar
  21. 21.
    Allen FH (2002) Acta Cryst B58:380–388CrossRefGoogle Scholar
  22. 22.
    Das P, Biswas AN, Upreti S, Mandal PK, Bandyopadhyay P (2008) Acta Cryst E64:o676Google Scholar
  23. 23.
    Tamura K, Hori K (2000) Bull Chem Soc Jpn 73:843–850CrossRefGoogle Scholar
  24. 24.
    Tamura K, Uchida H, Hori K (1999) Mol Cryst Liq Cryst 330:201–206CrossRefGoogle Scholar
  25. 25.
    Hori K, Kerbo C, Okamoto H, Takenaka S (2001) Mol Cryst Liq Cryst 365:617–637CrossRefGoogle Scholar
  26. 26.
    Das P, Biswas AN, Acharya S, Chaudhury A, Bandyopadhyay P, Mandal PK, Upreti S (2009) Mol Cryst Liq Cryst 501:53–61CrossRefGoogle Scholar
  27. 27.
    Das P, Biswas AN, Acharya S, Choudhary A, Bandyopadhyay P, Mandal PK (2008) Liq Cryst 35:895–903CrossRefGoogle Scholar
  28. 28.
    Gupta SK, Hitchock PB, Kushwah YS (2002) Polyhedron 21:1787–1793CrossRefGoogle Scholar
  29. 29.
    Gupta SK, Anjana C, Sen N, Jasinski JP, Golen JA (2012) J Chem Crystallogr 45:193–201Google Scholar
  30. 30.
    Armarego WLF, Perrin DD (1997) Purification of labortory chemicals, 4th edn. Butterworth-Heinemann, OxfordGoogle Scholar
  31. 31.
    Agilent (2014) CrysAlisPRO. Agilent technologies, YarntonGoogle Scholar
  32. 32.
    Palatinus L, Chapuis G (2007) J Appl Crystallogr 40:786–790CrossRefGoogle Scholar
  33. 33.
    Sheldrick GM (2015) Acta Cryst C71:3–8Google Scholar
  34. 34.
    Bruker (2006) SHELXTL. Bruker AXS Inc, MadisonGoogle Scholar
  35. 35.
    Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R (1987) J Chem Soc Perkin Trans 2:S1–19CrossRefGoogle Scholar
  36. 36.
    Schmidt JR, Polik WF(2007) Web MO Pro, version 8.0.01e; WebMO, LLC: Holland. http://www.webmo.net
  37. 37.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomerym JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov JB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Gaussian, Inc., WallingfordGoogle Scholar
  38. 38.
    Becke AD (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  39. 39.
    Lee C, Yang W, Parr RG (1998) Phys Rev B 37:785–789CrossRefGoogle Scholar
  40. 40.
    Hehre WJ, Random L, Schleyer PR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New YorkGoogle Scholar
  41. 41.
    Pearl GM, Zerner MC, Broo A, McKelvey J (1998) J Compt Chem 19:781–796CrossRefGoogle Scholar
  42. 42.
    Guillaumont D, Nakamura S (2000) Dyes Pigm 46:85–92CrossRefGoogle Scholar
  43. 43.
    Holland JP, Barnard PJ, Bayly SR, Dilworth JR, Green JC (2009) Inorg Chim Acta 362:402–406CrossRefGoogle Scholar
  44. 44.
    Origin 8.0, OriginLab (2007) Northampton, MAGoogle Scholar
  45. 45.
    Dewar MJS, Hart LS (1970) Tetrahedron 26:973–1000CrossRefGoogle Scholar
  46. 46.
    Murashige R, Hayashi Y, Ohmori S, Torii A, Aizu Y, Muto Y, Murai Y, Oda Y, Hashimoto M (2011) Tetrahedron 67:641–649CrossRefGoogle Scholar
  47. 47.
    Adogla EA, Janser RFJ, Fairbanks SS, Vortolomei CM, Meka RK, Janser I (2012) Tetrahedron Lett 53:11–14CrossRefGoogle Scholar
  48. 48.
    Bernstein J, Davis RE, Shimoni L, Chang N-L (1995) Angew Chem Int Ed Engl 34:1555–1573CrossRefGoogle Scholar
  49. 49.
    Etter MC, Macdonald JC, Bernstein B (1990) Acta Crystallogr Sec B 46:256–262CrossRefGoogle Scholar
  50. 50.
    Pulkkinen JT, Laatikainen R, Ahlgren MJ, Perakyla M, Vepsalainen JJ (2000) J Chem Soc Perkin Trans 2:777–784CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Studies in ChemistryJiwaji UniversityGwaliorIndia
  2. 2.Department of ChemistryHoward UniversityWashingtonUSA
  3. 3.Department of ChemistryKeene State CollegeKeeneUSA

Personalised recommendations