Advertisement

Journal of Chemical Crystallography

, Volume 45, Issue 10–12, pp 495–503 | Cite as

Crystal and Molecular Structures of Three Salts from Aliphatic Amines (2,4-Dichlorophenoxy)-acetic acid, 4-Nitrophthalic Acid, and 1,5-Naphthalenedisulfonic Acid

  • Shouwen Jin
  • Kai Xu
  • Xianhong Wen
  • Li Jin
  • Daqi Wang
Original Paper

Abstract

Three aliphatic amine derived supramolecular complexes were synthesized and structurally characterized by X-ray crystallography. All these structures adopted the hetero supramolecular synthons. Compound 1 crystallizes in the monoclinic, space group C2/c, with a = 40.328(7) Å, b = 7.2054(14) Å, c = 7.6464(17) Å, α = 90º, β = 97.364(16)º, γ = 90º, V = 2203.6(8) Å3, Z = 8. Compound 2 crystallizes in the monoclinic, space group P2(1)/n, with a = 7.4134(4) Å, b = 18.3749(14) Å, c = 12.1456(12) Å, α = 90º, β = 104.227(2)º, γ = 90º, V = 1603.7(2) Å3, Z = 4. Compound 3 crystallizes in the monoclinic, space group P2(1)/c, with a = 9.8804(7) Å, b = 10.5061(8) Å, c = 11.8262(9) Å, α = 90º, β = 104.674(2)º, γ = 90º, V = 1187.57(15) Å3, Z = 2. Analysis of the crystal packing of 13 suggests that there are N–H···O hydrogen bonds between the acids and the aliphatic amines in all of the compounds. Except the classical hydrogen bonds, the secondary propagating interactions including CH···O, CH2···O, CH2···Cl, CH3···π, and π···π interactions also play important roles in the structure extension. In conclusion, we have shown that 2D–3D structures can be constructed by the collective non-covalent interactions.

Graphical Abstract

The crystal structures of the salts from aliphatic amines, (2,4-dichlorophenoxy)-acetic acid, 4-nitrophthalic acid, and 1,5-naphthalenedisulfonic acid are predominantly stabilized by the classical hydrogen bonds as well as CH···O, CH2···O, CH2···Cl, CH3···π, and π···π interactions.

Keywords

Crystal structures Aliphatic amines Organic acids Hydrogen bonds Nonconventional interactions 

Notes

Acknowledgments

This research was supported by Zhejiang Provincial Natural Science Foundation of China under Grant No. LY14B010006, the Education Office Foundation of Zhejiang Province under Grant No. Y201017321, the National Training Programs of Innovation and Entrepreneurship of China for Undergraduates under Grant No. 201410341022, and the Open Foundation of Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang Province, Zhejiang A & F University under Grant No. 2015CUFB02.

References

  1. 1.
    Steiner T (2002) Angew Chem Int Ed 41:48CrossRefGoogle Scholar
  2. 2.
    Ma JC, Dougherty DA (1997) Chem Rev 97:1303CrossRefGoogle Scholar
  3. 3.
    Nishio M (2004) CrystEngComm 6:130CrossRefGoogle Scholar
  4. 4.
    Claessens CG, Stoddart JF (1997) J Phys Org Chem 10:254CrossRefGoogle Scholar
  5. 5.
    Meyer EA, Castellano RK, Diederich F (2003) Angew Chem Int Ed 42:1210CrossRefGoogle Scholar
  6. 6.
    Desiraju GR (1995) Angew Chem Int Ed 34:2311CrossRefGoogle Scholar
  7. 7.
    Whitesides GM, Simanek EE, Mathias JP, Seto CT, Chin D, Mammen M, Gordon DM (1995) Acc Chem Res 28:37 and references therein CrossRefGoogle Scholar
  8. 8.
    Qureshi MKN, Smith MD (2006) Chem Commun 48:5006–5008CrossRefGoogle Scholar
  9. 9.
    Shukla R, Lindeman SV, Rathore R (2007) Chem Commun 36:3717–3719CrossRefGoogle Scholar
  10. 10.
    Wan CQ, Chen XD, Mak TCW (2008) CrystEngComm 10:475CrossRefGoogle Scholar
  11. 11.
    Prins LJ, Reinhoudt DN, Timmerman P (2001) Angew Chem Int Ed 40:2382CrossRefGoogle Scholar
  12. 12.
    Sada K, Tani T, Shinkai S (2006) Synlett 15:2364–2374CrossRefGoogle Scholar
  13. 13.
    Payer D, Comisso A, Dmitriev A, Strunskus T, Lin N, Woll C, DeVita A, Barth JV, Kern K (2007) Chem Eur J 13:3900CrossRefGoogle Scholar
  14. 14.
    Schnabel T, Srivastava A, Vrabec J, Hasse H (2007) J Phys Chem B 111:9871CrossRefGoogle Scholar
  15. 15.
    Tonge NM, MacMahon EC, Pugliesi I, Cockett MC (2007) J Chem Phys 126:154319CrossRefGoogle Scholar
  16. 16.
    Suresh SJ (2007) J Chem Phys 126:204705CrossRefGoogle Scholar
  17. 17.
    Fisher SZ, Anderson S, Henning R, Moffat K, Langan P, Thiyagarajand P, Schultzd AJ (2007) Acta Crystallogr D 63:1178CrossRefGoogle Scholar
  18. 18.
    Weber E (1998) Design of organic solids. Topics in current chemistry, vol 198. Springer, BerlinCrossRefGoogle Scholar
  19. 19.
    Bhogala BR (2003) Cryst Growth Des 3:547CrossRefGoogle Scholar
  20. 20.
    Du M, Zhang ZH, Zhao XJ (2005) Cryst Growth Des 5:1199CrossRefGoogle Scholar
  21. 21.
    Sarkar M, Biradha K (2006) Cryst Growth Des 6:202CrossRefGoogle Scholar
  22. 22.
    Ballabh A, Trivedi DR, Dastidar P (2005) Cryst Growth Des 5:1545CrossRefGoogle Scholar
  23. 23.
    Trivedi DR, Dastidar P (2006) Cryst Growth Des 6:1022CrossRefGoogle Scholar
  24. 24.
    Aakeröy CB, Beatty AM, Helfrich BA (2001) Angew Chem Int Ed 40:3240CrossRefGoogle Scholar
  25. 25.
    Pedireddi VR, Prakashareddy J (2002) Tetrahedron Lett 43:4927CrossRefGoogle Scholar
  26. 26.
    Refat MS, Elfalaky A, Elesh E (2011) J Mol Struct 990(1–3):217CrossRefGoogle Scholar
  27. 27.
    Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 47:386CrossRefGoogle Scholar
  28. 28.
    Shattock TR, Arora KK, Vishweshwar P, Zaworotko MJ (2008) Cryst Growth Des 8:4533CrossRefGoogle Scholar
  29. 29.
    Biradha K, Mahata G (2005) Cryst Growth Des 5:61CrossRefGoogle Scholar
  30. 30.
    MacDonald JC, Dorrestein PC, Pilley MM (2001) Cryst Growth Des 1:29CrossRefGoogle Scholar
  31. 31.
    Highfill ML, Chandrasekaran A, Lynch DE, Hamilton DG (2002) Cryst Growth Des 2:15CrossRefGoogle Scholar
  32. 32.
    Vishweshwar P, Nangia A, Lynch VM (2002) J Org Chem 67:556CrossRefGoogle Scholar
  33. 33.
    Nichol GS, Clegg W (2009) Cryst Growth Des 9:1844CrossRefGoogle Scholar
  34. 34.
    Men YB, Sun JL, Huang ZT, Zheng QY (2009) CrystEngComm 11:978CrossRefGoogle Scholar
  35. 35.
    Grossel CM, Dwyer AN, Hursthouse MB, Orton JB (2006) CrystEngComm 8:123CrossRefGoogle Scholar
  36. 36.
    Sasaki T, Ida Y, Hisaki I, Yuge T, Uchida Y, Tohnai N, Miyata M (2014) Chem Eur J 20:2478CrossRefGoogle Scholar
  37. 37.
    Jin SW, Wang DQ (2013) J Mol Struct 1037:242CrossRefGoogle Scholar
  38. 38.
    Jin SW, Zhang WB, Wang DQ, Gao HF, Zhou JZ, Chen RP, Xu XL (2010) J Chem Crystallogr 40:87CrossRefGoogle Scholar
  39. 39.
    Jin SW, Wang DQ, Jin ZJ, Wang LQ (2009) Polish J Chem 83:1937Google Scholar
  40. 40.
    Jin SW, Wang DQ (2010) J Chem Crystallogr 40:914CrossRefGoogle Scholar
  41. 41.
    Blessing RH (1995) Acta Crystallogr A 51:33CrossRefGoogle Scholar
  42. 42.
    Sheldrick GM (1996) SADABS “Siemens Area Detector Absorption Correction”. University of Göttingen, GöttingenGoogle Scholar
  43. 43.
    Sheldrick GM (1995) SHELXTL-PC, version 5.03. Siemens Analytical Instruments, MadisonGoogle Scholar
  44. 44.
    Lynch DE, Thomas LC, Smith G, Byriel KA, Kennard CHL (1998) Aust J Chem 51:867CrossRefGoogle Scholar
  45. 45.
    Smith G, White JM (2001) Aust J Chem 54:97CrossRefGoogle Scholar
  46. 46.
    Williams DH, Fleming I (1995) Spectroscopic methods in organic chemistry, 5th edn. McGraw-hill, LondonGoogle Scholar
  47. 47.
    Bernstein J, Davis RE, Shimoni L, Chang NL (1995) Angew Chem Int Ed 34:1555CrossRefGoogle Scholar
  48. 48.
    Wilkinson HS, Harrison WTA (2007) Acta Cryst E63:m902Google Scholar
  49. 49.
    Dale SH, Elsegood MRJ, Hemmings M, Wilkinson AL (2004) CrystEngComm 6:207CrossRefGoogle Scholar
  50. 50.
    Liu ML, Chen ZQ (2012) Acta Cryst. E68:o1745Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Shouwen Jin
    • 1
    • 2
  • Kai Xu
    • 1
    • 2
  • Xianhong Wen
    • 2
  • Li Jin
    • 1
    • 2
  • Daqi Wang
    • 3
  1. 1.Jiyang College ZheJiang A & F UniversityZhu’JiPeople’s Republic of China
  2. 2.Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry BiomassZhejiang A & F UniversityLin’anPeople’s Republic of China
  3. 3.Department of ChemistryLiaocheng UniversityLiaochengPeople’s Republic of China

Personalised recommendations