Journal of Chemical Crystallography

, Volume 45, Issue 7, pp 355–362 | Cite as

Methanolothermal Syntheses, Crystal Structures and Optical Properties of Binuclear Transition Metal Complexes Involving the Bidentate S-Donor Ligand μ-Sn2S6

  • Jing-yu Han
  • Yun Liu
  • Jia-lin Lu
  • Chun-ying Tang
  • Ya-li Shen
  • Yong Zhang
  • Ding-xian Jia
Original Paper


New binuclear transition metal complexes concerning the bidentate S-donor ligand μ-Sn2S6, [{Mn(tren)}2(μ-Sn2S6)] (1), [{Zn(tren)}2(μ-Sn2S6)] (2), and [{Mn(tepa)}2(μ-Sn2S6)] (3) [tren = tris(2-aminoethyl)amine, tepa = tetraethylenepentamine] were prepared under methanolothermal conditions. The Mn2+ and Zn2+ ions are coordinated by a tren ligand, forming [TM(tren)]2+ (TM = Mn, Zn) units. As a bidentate bridging ligand, the hexathiobistannate [Sn2S6]4− anion joins two [TM(tren)]2+ units via trans terminal S atoms to form neutral complexes 1 and 2. Both Mn2+ and Zn2+ ions are in a trigonal bipyramidal environment. In 3, the Mn2+ ion binds a pentadentate tepa ligand to give a [Mn(tepa)]2+ unit. Two [Mn(tepa)]2+ units are connected by a μ-Sn2S6 bridging ligand, forming neutral complex [{Mn(tepa)}2(μ-Sn2S6)], in which the Mn2+ ion is in an octahedral environment. Intermolecular N–H···S H-bonding interactions connect 13 into layered structures, while 3 forms a three-dimensional network via the N–H···S H-bonds. 13 exhibit possible semiconducting properties with the band gaps at 2.3, 2.7 and 2.4 eV, respectively.

Graphical Abstract

Transition metal complexes concerning the bidentate S-donor ligand μ-Sn2S6, [{Mn(tren)}2(μ-Sn2S6)], [{Zn(tren)}2(μ-Sn2S6)], and [{Mn(tepa)}2(μ-Sn2S6)] were respectively synthesized using tris(2-aminoethyl)amine (tren) and tetraethylenepentamine (tepa) as second ligands under mild methanolothermal conditions.


Manganese Zinc Thiostannate ligand Methanolothermal synthesis, crystal structure 



This work was supported by the National Natural Science Foundation China (NSFC, No. 21171123).


  1. 1.
    Sheldrick WS, Sheldrick M (1998) Coord Chem Rev 176:211CrossRefGoogle Scholar
  2. 2.
    Li J, Chen Z, Wang RJ, Proserpio DM (1999) Coord Chem Rev 190–192:707–735CrossRefGoogle Scholar
  3. 3.
    Zimmermann C, Anson CE, Weigend F, Clérac R, Dehnen S (2005) Inorg Chem 44:5686CrossRefGoogle Scholar
  4. 4.
    Wu M, Su W, Jasutkar N, Huang X, Li J (2005) Mater Res Bull 40:21CrossRefGoogle Scholar
  5. 5.
    Liao J-H, Marking GM, Hsu KF, Matsushita Y, Ewbank MD, Borwick R, Cunningham P, Rosker MJ, Kanatzidis MG (2003) J Am Chem Soc 125:9484CrossRefGoogle Scholar
  6. 6.
    Manos MJ, Chrissafis K, Kanatzidis MG (2006) J Am Chem Soc 128:8875CrossRefGoogle Scholar
  7. 7.
    Marking GA, Evain M, Petricek V, Kanatzidis MG (1998) J Solid State Chem 141:17CrossRefGoogle Scholar
  8. 8.
    Liao J, Varotsis C, Kanatzidis MG (1993) Inorg Chem 32:2453CrossRefGoogle Scholar
  9. 9.
    Dhingra SS, Huashalter RC (1994) Chem Mater 6:2376CrossRefGoogle Scholar
  10. 10.
    Palchik O, Gedanken A (2002) J Solid State Chem 165:125CrossRefGoogle Scholar
  11. 11.
    Bedard RL, Milson ST, Vail LD, Bennett JM, Flanigen EM (1989) Zeolite: facts, figures, future. In: Proceedings of the 8th international zeolite conference, Elsevier, Amsterdam, p 375Google Scholar
  12. 12.
    Dehnen S, Zimmermann C (2002) Z Anorg Allg Chem 628:2463CrossRefGoogle Scholar
  13. 13.
    Jiang T, Lough A, Ozin GA, Bedard RL (1998) J Mater Chem 8:733CrossRefGoogle Scholar
  14. 14.
    Li J, Marler B, Kessler H, Soulard M, kallus S (1997) Inorg Chem 36:4697CrossRefGoogle Scholar
  15. 15.
    Parise JB, Ko Y, Rijssenbeek J, Nellis DM, Tan K, Koch S (1994) J Chem Soc Chem Commun 4:527CrossRefGoogle Scholar
  16. 16.
    Loose A, Sheldrick WS (1999) Z Anorg Allg Chem 625:233CrossRefGoogle Scholar
  17. 17.
    Fehlker A, Blachnik R (2001) Z Anorg Allg Chem 627:1128CrossRefGoogle Scholar
  18. 18.
    Fehlker A, Blachnik R (2001) Z Anorg Allg Chem 627:411CrossRefGoogle Scholar
  19. 19.
    Ahari H, Dag Ö, Petrov S, Ozin GA (1998) J Phys Chem B 102:2356CrossRefGoogle Scholar
  20. 20.
    Ko Y, Tan K, Nellis DM, Koch S, Parise JB (1995) J Solid State Chem 114:506CrossRefGoogle Scholar
  21. 21.
    Park C, Pell MA, Ibers JA (1996) Inorg Chem 35:4555CrossRefGoogle Scholar
  22. 22.
    Jia DX, Zhang Y, Dai J, Zhu QY, Gu XM (2004) Z Anorg Allg Chem 630:313CrossRefGoogle Scholar
  23. 23.
    Jia DX, Dai J, Zhu QY, Zhang Y, Gu XM (2004) Polyhedron 23:937CrossRefGoogle Scholar
  24. 24.
    Chen Z, Wang RJ (1999) Acta Phys Chim Sin 12:1070Google Scholar
  25. 25.
    Liang JJ, Chen JF, Zhao J, Pan YL, Zhang Y, Jia DX (2011) Z Anorg Allg Chem 637:445CrossRefGoogle Scholar
  26. 26.
    Shreeve-Keyer JL, Warren CJ, Dhingra SS, Haushalter RC (1997) Polyhedron 16:1193CrossRefGoogle Scholar
  27. 27.
    Li J, Chen Z, Emge TJ, Yuen T, Proserpio DM (1998) Inorg Chim Acta 273:310CrossRefGoogle Scholar
  28. 28.
    Melullis M, Brandmayer MK, Dehnen S (2006) Z Anorg Allg Chem 632:64CrossRefGoogle Scholar
  29. 29.
    Gu XM, Dai J, Jia DX, Zhang Y, Zhu QY (2005) Cryst Growth Design 5:1845CrossRefGoogle Scholar
  30. 30.
    Behrens M, Scherb S, Näther C, Bensch W (2003) Z Anorg Allg Chem 629:1367CrossRefGoogle Scholar
  31. 31.
    Pienack N, Schinkel D, Puls A, Ordolff ME, Lühmann H, Näther C, Bensch W (2012) Z Naturforsch 67b:1098Google Scholar
  32. 32.
    Pienack N, Lehmann S, Lühmann H, El-Madani M, Näther C, Bensch W (2008) Z Anorg Allg Chem 634:2323CrossRefGoogle Scholar
  33. 33.
    Sheldrick WS (2000) J Chem Soc Dalton Trans 18:3041CrossRefGoogle Scholar
  34. 34.
    Seidlhofer B, Pienack N, Bensch W (2010) Z Naturforsch 65b:937Google Scholar
  35. 35.
    Zhao J, Liang JJ, Chen JF, Pan YL, Zhang Y, Jia DX (2011) Inorg Chem 50:2288CrossRefGoogle Scholar
  36. 36.
    Jia DX, Zhao J, Pan YL, Tang WW, Wu B, Zhang Y (2011) Inorg Chem 50:7195CrossRefGoogle Scholar
  37. 37.
    Wendlandt WW, Hecht HG (1996) Reflectance spectroscopy. Interscience Publishers, New YorkGoogle Scholar
  38. 38.
    Sheldrick GM (1997) SHELXS-97, Program for structure solution. Universität of Göttingen, GöttingenGoogle Scholar
  39. 39.
    Sheldrick GM (1997) SHELXL-97, Program for structure refinement. Universität of Göttingen, GöttingenGoogle Scholar
  40. 40.
    Pienack N, Näther C, Bensch W (2009) Eur J Inorg Chem 19:1575CrossRefGoogle Scholar
  41. 41.
    Palchik O, Iyer RG, Liao JH, Kanatzidis MG (2003) Inorg Chem 42:5052CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jing-yu Han
    • 1
  • Yun Liu
    • 1
  • Jia-lin Lu
    • 1
  • Chun-ying Tang
    • 1
  • Ya-li Shen
    • 1
  • Yong Zhang
    • 1
  • Ding-xian Jia
    • 1
  1. 1.College of Chemistry, Chemical Engineering and Materials ScienceSoochow UniversitySuzhouPeople’s Republic of China

Personalised recommendations