Journal of Chemical Crystallography

, Volume 44, Issue 11–12, pp 555–571 | Cite as

Hydrogen Bonded Supramolecular Association in Organic Acid–Base Salts: Crystal Structures of Four Proton-Transfer Complexes Assembled from 2-Amino-4-methylpyridine with 2-Chloro, 4-Chloro, 3-Methyl and 4-Methylbenzoic Acid

  • Nuridayanti Che Khalib
  • Kaliyaperumal Thanigaimani
  • Suhana Arshad
  • Ibrahim Abdul Razak
Original Paper


Four molecular salts, 2-amino-4-methylpyridinium 2-chlorobenzoate [(2A4MP)+·(2CBA)] (A), 2-amino-4-methylpyridinium 4-chlorobenzoate [(2A4MP)+·(4CBA)] (B), 2-amino-4-methylpyridinium 3-methylbenzoate [(2A4MP)+·(3MBA)] (C), and 2-amino-4-methylpyridinium 4-methylbenzoate dihydrate [(2A4MP)+·(4MBA)·(2H2O)] (D), were obtained from self-assembly of the corresponding acid with the 2-amino-4-methylpyridine, and their structures were fully characterized. All the four compounds are organic salts, with proton transfer occurring to the pyridine N of the 2-amino-4-methylpyridine moiety. All four molecular salts adopt supramolecular [R 2 2 (8)] heterosynthons [N+–H···O (±) charge-assisted hydrogen bonds]. These heterosynthons are further connected via N–H···O hydrogen bonds to form supramolecular chain in all of the salts except in D. All supramolecular architectures of the adducts AD involve extensive classical hydrogen bonds as well as other noncovalent interactions. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. All the complexes displayed 1D–3D frameworks structure for the synergistic effect of the various non-covalent interactions.

Graphical Abstract

The crystal structure determinations of the proton-transfer compounds of 2-amino-4-methylpyridine with the aromatic carboxylic acids, 2-chloro, 4-chloro, 3-methyl and 4-methylbenzoic acid have allowed the description of the hydrogen-bonding features of the respective 1D–3D frameworks structures.


X-ray diffraction Hydrogen bond Crystal structure Structure characterization Aminopyridine-acidic components Supramolecular heterosynthon Organic salt 



The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities and USM Short Term Grant, No. 304/PFIZIK/6312078 to conduct this work. KT thanks the Academy of Sciences for the Developing World and USM for the TWAS–USM fellowship. NCK thanks the Ministry of Education Malaysia for the MyBrain15 Myphd scholarships.


  1. 1.
    Etter MC (1990) Acc Chem Res 23(4):120–126CrossRefGoogle Scholar
  2. 2.
    Braga D, Grepioni F, Desiraju GR (1998) Chem Rev 98(4):1375–1406CrossRefGoogle Scholar
  3. 3.
    Desiraju GR (2002) Acc Chem Res 35:565–573CrossRefGoogle Scholar
  4. 4.
    Zaworotko MJ (2007) Cryst Growth Des 7(1):4–9CrossRefGoogle Scholar
  5. 5.
    Lehn JM (1990) Angew Chem Int Ed Engl 29:1304–1319CrossRefGoogle Scholar
  6. 6.
    Aakeroy CB, Beatty M (2001) Aust J Chem 54(7):409–421CrossRefGoogle Scholar
  7. 7.
    Wang L, Zhao L, Xu L, Chen R, Yang Y (2012) CrystEngComm 14:6998–7008CrossRefGoogle Scholar
  8. 8.
    Wang L, Zhao L, Liu M, Chen R, Yang Y, Gu Y (2012) Sci China Chem 55(10):2115–2122CrossRefGoogle Scholar
  9. 9.
    Aitipamula S, Nangia A (2005) Chem Eur J 11:6727–6742CrossRefGoogle Scholar
  10. 10.
    Arora KK, Pedireddi VR (2003) J Org Chem 68:9177–9185CrossRefGoogle Scholar
  11. 11.
    Bhogala BR, Nangia A (2003) Cryst Growth Des 3:547–554CrossRefGoogle Scholar
  12. 12.
    Aakeröy CB, Salmon DJ (2005) CrystEngComm 7:439–448CrossRefGoogle Scholar
  13. 13.
    Bond AD (2003) Chem Commun 2:250–251Google Scholar
  14. 14.
    Bhogala BR, Nangia A (2008) New J Chem 32:800–807CrossRefGoogle Scholar
  15. 15.
    Bernstein J, Davis RE, Shimoni L, Chang NL (1995) Angew Chem Int Ed Engl 34:1555–1573CrossRefGoogle Scholar
  16. 16.
    Hemamalini M, Fun HK (2010) Acta Cryst E66:o1843–o1844Google Scholar
  17. 17.
    Khalib NC, Thanigaimani K, Arshad S, Razak IA (2013) Acta Cryst E69:o1120Google Scholar
  18. 18.
    Shen H, Nie JJ, Xu DJ (2008) Acta Cryst E64:o1129Google Scholar
  19. 19.
    Muralidharan S, Elavarasu N, Srinivasan T, Gopalakrishnan R, Velmurugan D (2013) Acta Cryst E69:o910Google Scholar
  20. 20.
    Hemamalini M, Fun HK (2010) Acta Cryst E66:o335Google Scholar
  21. 21.
    Thanigaimani K, Khalib NC, Arshad S, Razak IA (2013) Acta Cryst E69:o537–o538Google Scholar
  22. 22.
    Hemamalini M, Fun HK (2010) Acta Cryst E66:o1418–o1419Google Scholar
  23. 23.
    Fun HK, Balasubramani K (2009) Acta Cryst E65:o1496–o1497Google Scholar
  24. 24.
    Bruker (2009) SADABS, APEX2 and SAINT. Bruker AXS, MadisonGoogle Scholar
  25. 25.
    Cosier J, Glazer AM (1986) J Appl Cryst 19:105–107CrossRefGoogle Scholar
  26. 26.
    Sheldrick GM (2008) Acta Cryst A64:112–122CrossRefGoogle Scholar
  27. 27.
    Spek AL (2009) Acta Cryst D65:148–155Google Scholar
  28. 28.
    Kvick A, Noordik J (1977) Acta Cryst B33:2862–2866CrossRefGoogle Scholar
  29. 29.
    Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R (1987) J Chem Soc Perkin Trans 2:S1–S19CrossRefGoogle Scholar
  30. 30.
    Lynch DE, Jones GD (2004) Acta Cryst B60:748–754CrossRefGoogle Scholar
  31. 31.
    Thanigaimani K, Farhadikoutenaei A, Khalib NC, Arshad S, Razak IA (2012) Acta Cryst E68:o3195Google Scholar
  32. 32.
    Hemamalini M, Fun HK (2010) Acta Cryst E66:o2151–o2152Google Scholar
  33. 33.
    Thanigaimani K, Khalib NC, Arshad S, Razak IA (2013) Acta Cryst E69:o318Google Scholar
  34. 34.
    Allen FH, Raithby PR, Shields GP, Taylor R (1998) Chem Commun 9:1043–1044CrossRefGoogle Scholar
  35. 35.
    Moreno-Fuquen R, Santos RDA, Kennedy AR (2011) Acta Cryst E67:o569Google Scholar
  36. 36.
    Silverstein RM (2002) Spectrometric identification of organic compounds, 6th edn. Wiley, New YorkGoogle Scholar
  37. 37.
    Lynch DE, Thomas LC, Smith G, Byriel KA, Kennard CHL (1998) Aust J Chem 51:867CrossRefGoogle Scholar
  38. 38.
    Smith G, White JM (2001) Aust J Chem 54:97–100CrossRefGoogle Scholar
  39. 39.
    Bondock S, Tarhoni AEG, Fadda AA (2011) ARKIVOC 2:227–239Google Scholar
  40. 40.
    Zhang D, Sun H, Zhang L, Zhou Y, Li C, Jiang H, Chen K, Liu H (2012) Chem Commun 48:2909–2911CrossRefGoogle Scholar
  41. 41.
    Sangeetha V, Govindarajan M, Kanagathara N, Gunasekaran S, Rajakumar PR, Anbalagan G (2014) J Mol Struct 1067:14–26Google Scholar
  42. 42.
    Sangeetha V, Govindarajan M, Kanagathara N, Marchewka MK, Gunasekaran S, Anbalagan G (2014) Spectrochim Acta A 125:252–263Google Scholar
  43. 43.
    Özden S, Karatas H, Yıldız S, Göker H (2004) Arch Pharm Pharm Med Chem 337:556–562CrossRefGoogle Scholar
  44. 44.
    Ha ST, Ong LK, Win YF, Koh TM, Yeap GY (2008) Molbank 2008(3) M582:1–3Google Scholar
  45. 45.
    André V, Fernandes A, Santos PP, Duarte MT (2011) Cryst Growth Des 11:2325–2334CrossRefGoogle Scholar
  46. 46.
    Karki S, Friščić T, Fábián L, Jones W (2010) CrystEngComm 12:4038–4041CrossRefGoogle Scholar
  47. 47.
    Weyna DR, Shattock TR, Vishweshwar P, Zaworotko MJ (2009) Cryst Growth Des 9(2):1106–1123CrossRefGoogle Scholar
  48. 48.
    Bhogala BR, Basavoju S, Nangia A (2005) CrystEngComm 7:551–562CrossRefGoogle Scholar
  49. 49.
    Portalone G, Colapietro M (2009) J Chem Cryst 39:193–200CrossRefGoogle Scholar
  50. 50.
    Portalone G (2011) Chem Cent J 5:51CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Nuridayanti Che Khalib
    • 1
  • Kaliyaperumal Thanigaimani
    • 1
  • Suhana Arshad
    • 1
  • Ibrahim Abdul Razak
    • 1
  1. 1.X-ray Crystallography Unit, School of PhysicsUniversiti Sains MalaysiaGeorge TownMalaysia

Personalised recommendations