Skip to main content
Log in

Crystal and Molecular Structures of the Salts of Diethylenetriamine with Two Organic Acids

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Two crystalline organic salts of diethylenetriamine (L): with 2,4,6-trinitrophenol (picric acid = Pic), anhydrous [(H2L)2+·(Pic)2] (1), and with 3,5-dinitrosalicylic acid (3,5-dns), the hydrate [(H2L)2+ (3,5-dns)2−·H2O (2) have been prepared and characterized by X-ray diffraction analysis, IR, and elemental analysis. Both compounds 1 and 2 crystallize in the monoclinic space group P21/c, with Z = 4 in cells with a = 8.729(3) Å, b = 12.437(4) Å, c = 20.922(7) Å, β = 98.154(4)º, V = 2,248.5(13) Å3 (for 1) and a = 10.8722(7) Å, b = 20.5909(19) Å, c = 6.9758(4) Å, β = 94.509(1)º, V = 1,556.8(2) Å3 (for 2). The supramolecular architectures of both 1 and 2 involve extensive hydrogen bonding including O–H···N, N–H···O and N–H···N interactions as well as other non-covalent C–H···π and π···π interactions, giving three-dimensional framework structures.

Graphical Abstract

The crystal structures of the diethylenetriamine salts with picric acid and 3,5-dinitrosalicylic acid show extensive hydrogen bonding as well as C–H···π and π···π interections, giving three-dimensional networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lam CK, Mak TCW (2000) Tetrahedron 56:6657

    Article  CAS  Google Scholar 

  2. Tanase S, Bouwman E, Long GJ, Shahin AM, Mills AM, Jan Reedijk ALS (2004) Eur J Inorg Chem 4572

  3. Janiak C (2000) J Chem Soc Dalton Trans 3885

  4. Takahashi O, Kohno Y, Nishio M (2010) Chem Rev 110:6049

    Article  CAS  Google Scholar 

  5. Berkovitch-Yellin Z, Leiserowitz L (1984) Acta Crystallogr B40:159

    Article  CAS  Google Scholar 

  6. Cho KH, No KT, Scheraga HA (2000) J Phys Chem A 104:6505

    Article  CAS  Google Scholar 

  7. Koch W, Frenking G, Gauss J, Cremer D (1986) J Am Chem Soc 108:5808

    Article  CAS  Google Scholar 

  8. Desiraju GR (2002) Acc Chem Res 35:565

    Article  CAS  Google Scholar 

  9. Braga D, Maini L, Paganelli F, Tagliavini E, Casolari S, Grepioni F (2001) J Organomet Chem 637–639:609

    Article  Google Scholar 

  10. Liu JQ, Wang YY, Ma LF, Zhang WH, Zeng XR, Zhong F, Shi QZ, Peng SM (2008) Inorg Chim Acta 361:173

    Article  CAS  Google Scholar 

  11. Biswas C, Drew MGB, Escudero D, Frontera A, Ghosh A (2009) Eur J Inorg Chem 15:2238

    Article  Google Scholar 

  12. Maamen M, Gordon DM (1995) Acc Chem Res 28:37 and references therein

    Article  Google Scholar 

  13. Weyna DR, Shattock T, Vishweshwar P, Zaworotko MJ (2009) Cryst Growth Des 9:1106

    Article  CAS  Google Scholar 

  14. Du M, Zhang ZH, Zhao XJ (2005) Cryst Growth Des 5:1247

    Article  CAS  Google Scholar 

  15. Desiraju GR (1989) Crystal engineering, the design of organic solids. Elsevier, Amsterdam

    Google Scholar 

  16. Leiserowitz L (1976) Acta Crystallogr B32:775

    Article  CAS  Google Scholar 

  17. Kolotuchin SV, Fenlon EE, Wilson SR, Loweth CJ, Zimmerman SC (1995) Angew Chem Int Ed Engl 34:2654

    Article  CAS  Google Scholar 

  18. Kuduva SS, Craig DC, Nangia A, Desiraju GR (1999) J Am Chem Soc 121:1936

    Article  CAS  Google Scholar 

  19. Bernstein J, Etter MC, Leiserowitz L (1994) Struct Correl 2:431

    Article  CAS  Google Scholar 

  20. Moulton B, Zaworotko MJ (2001) Chem Rev 101:1629

    Article  CAS  Google Scholar 

  21. Reddy LS, Bethune SJ, Kampf JW, Rodríguez-Hornedo N (2009) Cryst Growth Des 9:378

    Article  CAS  Google Scholar 

  22. Lee IS, Shin DM, Chung YK (2003) Cryst Growth Des 3:521

    Article  CAS  Google Scholar 

  23. Bhogala BR, Nangia A (2003) Cryst Growth Des 3:547

    Article  CAS  Google Scholar 

  24. MacDonald JC, Dorrestein PC, Pilley MM (2001) Cryst Growth Des 1:29

    Article  CAS  Google Scholar 

  25. Highfill ML, Chandrasekaran A, Lynch DE, Hamilton DG (2002) Cryst Growth Des 2:15

    Article  CAS  Google Scholar 

  26. Vishweshwar P, Nangia A, Lynch VM (2002) J Org Chem 67:556

    Article  CAS  Google Scholar 

  27. Nichol GS, Clegg W (2009) Cryst Growth Des 9:1844

    Article  CAS  Google Scholar 

  28. Men YB, Sun JL, Huang ZT, Zheng QY (2009) Cryst Eng Comm 11:978

    Article  CAS  Google Scholar 

  29. Grossel CM, Dwyer AN, Hursthouse MB, Orton JB (2006) Cryst Eng Comm 8:123

    Article  CAS  Google Scholar 

  30. Ilioudis CA, Georganopoulou DG, Steed JW (2002) J Mater Chem 4:26

    Google Scholar 

  31. Ilioudis CA, Hancock KSB, Georganopoulou DG, Steed JW (2000) New J Chem 24:787

    Article  CAS  Google Scholar 

  32. Pasban N, Esmhosseini M, Ahmadi M, Mohebbi M, Salkhordeh S, Vatani M (2012) Z Kristallogr-New Cryst Struct 227:265

    CAS  Google Scholar 

  33. Jin SW, Zhang WB, Wang DQ, Gao HF, Zhou JZ, Chen RP, Xu XL (2010) J Chem Crystallogr 40:87

    Article  CAS  Google Scholar 

  34. Jin SW, Wang DQ, Jin ZJ, Wang LQ (2009) Polish J Chem 83:1937

    CAS  Google Scholar 

  35. Bruker (2004) SMART and SAINT. Bruker AXS, Madison

    Google Scholar 

  36. Sheldrick GM (2000) SHELXTL, structure determination software suite, version 6.14. Bruker AXS, Madison

    Google Scholar 

  37. Lynch DE, Thomas LC, Smith G, Byriel KA, Kennard CHL (1998) Aust J Chem 51:867

    Article  CAS  Google Scholar 

  38. Smith G, White JM (2001) Aust J Chem 54:97

    Article  CAS  Google Scholar 

  39. Kagawa T, Kawai R, Kashino S, Haisa M (1976) Acta Crystallogr B32:3171

    Article  CAS  Google Scholar 

  40. Maartmann-Moe K (1969) Acta Crystallogr B25:1452

    Article  Google Scholar 

  41. Palenik GJ (1972) Acta Crystallogr B28:1633

    Article  Google Scholar 

  42. Talukdar AN, Chaudhuri B (1976) Acta Crystallogr B32:803

    Article  CAS  Google Scholar 

  43. Ferguson G, Kaitner B, Lloyd D, McNab H (1984) J Chem Res (S) 182

  44. Sawka-Dobrowolska W, Grech E, Brzezinski B, Malarski Z, Sobczyk L (1995) J Mol Struct 356:117

    Article  CAS  Google Scholar 

  45. Majerz I, Malarski Z, Sobczyk L (1997) Chem Phys Lett 274:361

    Article  CAS  Google Scholar 

  46. Muthamizhchelvan C, Saminathan K, Fraanje J, Peschar R, Sivakamar K (2005) Anal Sci 21:X61

    Article  CAS  Google Scholar 

  47. Smith G, Wermuth UD, Healy PC, Bott RC, White JM (2005) Aust J Chem 55:349

    Article  Google Scholar 

  48. González FV, Jain A, Rodríguez S, Sáez JA, Vicent C, Peris G (2010) J Org Chem 75:5888

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Zhejiang Provincial Natural Science Foundation of China under Grant No. LY14B010006, the Zhejiang Provincial Public Techniques Research and Social Development under Grant No. 2012C23058, and the innovation project of the Tianmu College of the ZheJiang A & F University under Grant No. TMKC1352.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouwen Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Jin, S., Lin, Z. et al. Crystal and Molecular Structures of the Salts of Diethylenetriamine with Two Organic Acids. J Chem Crystallogr 44, 459–465 (2014). https://doi.org/10.1007/s10870-014-0537-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-014-0537-z

Keywords

Navigation