Advertisement

Journal of Chemical Crystallography

, Volume 44, Issue 8, pp 435–441 | Cite as

Crystal and Molecular Structure of Two Proton Transfer Compounds from Quinolin-8-ol, 4-nitro-phthalic Acid, and 1,5-Naphthalenedisulfonic Acid

  • Shouwen Jin
  • Daqi Wang
  • Shanshan Du
  • Qianli Linhe
  • Mingjun Fu
  • Siyuan Wu
Original Paper

Abstract

Two crystalline proton transfer compounds (quinolin-8-ol) : (4-nitro-phthalic acid) [(HL)+ · (Hnpa), L = quinolin-8-ol, Hnpa = 4-nitro-hydrogenphthalate] (1), and (quinolin-8-ol):(1,5-naphthalenedisulfonic acid):2H2O [(HL+)2 · (nds2−) · 2H2O, nds2− = 1,5-naphthalenedisulfonate] (2) derived from quinolin-8-ol and organic acids (4-nitro-phthalic acid, and 1,5-naphthalenedisulfonic acid) were prepared and characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. Compound 1 crystallizes in the monoclinic, space group P2(1), with a = 6.9540(8) Å, b = 7.4425(10) Å, c = 30.2082(18) Å, β = 103.309(2)°, V = 1521.4(3) Å3, Z = 4. Compound 2 crystallizes in the orthorhombic, space group Pbca, with a = 14.7954(13) Å, b = 11.0924(11) Å, c = 16.2422(14) Å, V = 2665.6(4) Å3, Z = 4. In both compounds, as predicted on the basis of pKa differences, proton transfer from the acidic group to the hetero-nitrogen of the quinolin-8-ol molecule occurs, together with primary N–H···O hydrogen-bond formation between donor and acceptor atoms. In neither of the compounds the primary cyclic hydrogen-bonded R 2 2 (8) A-B heterodimer was formed, involving the second oxygen of the anion and the 8-hydroxy substituent of quinolin-8-ol; nor were there any A–A or B–B homodimers found. Instead, this molecule acts in a bridging mode to link the associated molecular units into chain polymers through hydrogen bonds and other nonbonding interactions. The role of these noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, both compounds displayed 3D framework structure. In addition, these two proton transfer compounds display different stoichiometric ratios, one is 1:1, and the other is 2:1.

Graphical Abstract

Due to the weak interactions, the compound displays 3D framework structure.

Keywords

Crystal structure Hydrogen bonding Proton transfer compounds Quinolin-8-ol Organic acids 

Notes

Acknowledgments

We gratefully acknowledge the financial support of the Zhejiang Provincial Natural Science Foundation (LY14B010006), the financial support of the Education Office Foundation of Zhejiang Province (project No. Y201017321) and the financial support of the Zhejiang A & F University Science Foundation (project No. 2009FK63).

References

  1. 1.
    Lam CK, Mak TCW (2000) Tetrahedron 56:6657CrossRefGoogle Scholar
  2. 2.
    Tanase S, Bouwman E, Long GJ, Shahin AM, Mills AM, Jan Reedijk ALS, (2004) Eur J Inorg Chem 4572Google Scholar
  3. 3.
    Janiak C, J Chem Soc Dalton Trans (2000) 3885Google Scholar
  4. 4.
    Takahashi O, Kohno Y, Nishio M (2010) Chem Rev 110:6049CrossRefGoogle Scholar
  5. 5.
    Berkovitch-Yellin Z, Leiserowitz L (1984) Acta Cryst B40:159CrossRefGoogle Scholar
  6. 6.
    Cho KH, No KT, Scheraga HA (2000) J Phys Chem A 104:6505CrossRefGoogle Scholar
  7. 7.
    Koch W, Frenking G, Gauss J, Cremer D (1986) J Am Chem Soc 108:5808CrossRefGoogle Scholar
  8. 8.
    Desiraju GR (2002) Acc Chem Res 35:565CrossRefGoogle Scholar
  9. 9.
    Braga D, Maini L, Paganelli F, Tagliavini E, Casolari S, Grepioni F (2001) J Organomet Chem 637–639:609CrossRefGoogle Scholar
  10. 10.
    Liu JQ, Wang YY, Ma LF, Zhang WH, Zeng XR, Zhong F, Shi QZ, Peng SM (2008) Inorg Chim Acta 361:173CrossRefGoogle Scholar
  11. 11.
    Biswas C, Drew MGB, Escudero D, Frontera A, Ghosh A (2009) Eur J Inorg Chem 2238Google Scholar
  12. 12.
    Maamen M, Gordon DM (1995) Acc Chem Res 28:37 and references thereinCrossRefGoogle Scholar
  13. 13.
    Weyna DR, Shattock T, Vishweshwar P, Zaworotko MJ (2009) Cryst Growth Des 9:1106CrossRefGoogle Scholar
  14. 14.
    Du M, Zhang ZH, Zhao XJ (2005) Cryst Growth Des 5:1247CrossRefGoogle Scholar
  15. 15.
    Desiraju GR (1989) Crystal engineering: the design of organic solids. Elsevier, AmsterdamGoogle Scholar
  16. 16.
    Leiserowitz L (1976) Acta Crystallogr B32:775CrossRefGoogle Scholar
  17. 17.
    Kolotuchin SV, Fenlon EE, Wilson SR, Loweth CJ, Zimmerman SC (1995) Angew Chem Int Ed Engl 34:2654CrossRefGoogle Scholar
  18. 18.
    Kuduva SS, Craig DC, Nangia A, Desiraju GR (1999) J Am Chem Soc 121:1936CrossRefGoogle Scholar
  19. 19.
    Bernstein J, Etter MC, Leiserowitz L (1994) Struct Correl 2:431CrossRefGoogle Scholar
  20. 20.
    Moulton B, Zaworotko MJ (2001) Chem Rev 101:1629CrossRefGoogle Scholar
  21. 21.
    Reddy LS, Bethune SJ, Kampf JW, Rodríguez-Hornedo N (2009) Cryst Growth Des 9:378CrossRefGoogle Scholar
  22. 22.
    Lee IS, Shin DM, Chung YK (2003) Cryst Growth Des 3:521CrossRefGoogle Scholar
  23. 23.
    Bhogala BR, Nangia A (2003) Cryst Growth Des 3:547CrossRefGoogle Scholar
  24. 24.
    MacDonald JC, Dorrestein PC, Pilley MM (2001) Cryst Growth Des 1:29CrossRefGoogle Scholar
  25. 25.
    Highfill ML, Chandrasekaran A, Lynch DE, Hamilton DG (2002) Cryst Growth Des 2:15CrossRefGoogle Scholar
  26. 26.
    Vishweshwar P, Nangia A, Lynch VM (2002) J Org Chem 67:556CrossRefGoogle Scholar
  27. 27.
    Nichol GS, Clegg W (2009) Cryst Growth Des 9:1844CrossRefGoogle Scholar
  28. 28.
    Men YB, Sun JL, Huang ZT, Zheng QY (2009) CrystEngComm 11:978CrossRefGoogle Scholar
  29. 29.
    Smith G, Wermuth UD, White JM (2001) Aust J Chem 54:171CrossRefGoogle Scholar
  30. 30.
    Smith G, Wermuth UD, White JM (2003) CrystEngComm 5:58CrossRefGoogle Scholar
  31. 31.
    Smith G, White JM (2001) Aust J Chem 54:97CrossRefGoogle Scholar
  32. 32.
    Jin SW, Zhang WB, Wang DQ, Gao HF, Zhou JZ, Chen RP, Xu XL (2010) J Chem Crystallogr 40:87CrossRefGoogle Scholar
  33. 33.
    Jin SW, Wang DQ, Jin ZJ, Wang LQ (2009) Polish J Chem 83:1937Google Scholar
  34. 34.
    Bruker (2004) SMART and SAINT, Bruker AXS, MadisonGoogle Scholar
  35. 35.
    Sheldrick GM (2000) SHELXTL, Structure Determination Software Suite, version 6.14. Bruker AXS, MadisonGoogle Scholar
  36. 36.
    Wendlandt WW, Horton GR (1963) J Inorg Nucl Chem 25:247CrossRefGoogle Scholar
  37. 37.
    Roychowdhury P, Das BN, Basak BS (1978) Acta Crystallogr B 34:1047CrossRefGoogle Scholar
  38. 38.
    Simonsen SH, Bechtel DW (1980) Am Cryst Assoc Ser 27:23Google Scholar
  39. 39.
    Bannerjee T, Saha NN (1986) Acta Crystallogr C 42:1408CrossRefGoogle Scholar
  40. 40.
    Smith G, Wermuth UD, Healy PC, White JM (2006) Acta Cryst E62:o5089Google Scholar
  41. 41.
    Dale SH, Elsegood MRJ, Hemmings M, Wilkinson AL (2004) CrystEngComm 6:207CrossRefGoogle Scholar
  42. 42.
    Prout CK, Wheeler AG (1967) J Chem Soc A 469Google Scholar
  43. 43.
    Castellano EE, Prout CK (1971) J Chem Soc A 550Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Shouwen Jin
    • 1
  • Daqi Wang
    • 2
  • Shanshan Du
    • 1
  • Qianli Linhe
    • 1
  • Mingjun Fu
    • 1
  • Siyuan Wu
    • 1
  1. 1.Tianmu CollegeZheJiang A & F UniversityLin’anPeople’s Republic of China
  2. 2.Department of ChemistryLiaocheng UniversityLiaochengPeople’s Republic of China

Personalised recommendations